Chimeric plastid proteome in the Florida "red tide" dinoflagellate Karenia brevis
- PMID: 16877498
- DOI: 10.1093/molbev/msl074
Chimeric plastid proteome in the Florida "red tide" dinoflagellate Karenia brevis
Abstract
Current understanding of the plastid proteome comes almost exclusively from studies of plants and red algae. The proteome in these taxa has a relatively simple origin via integration of proteins from a single cyanobacterial primary endosymbiont and the host. However, the most successful algae in marine environments are the chlorophyll c-containing chromalveolates such as diatoms and dinoflagellates that contain a plastid of red algal origin derived via secondary or tertiary endosymbiosis. Virtually nothing is known about the plastid proteome in these taxa. We analyzed expressed sequence tag data from the toxic "Florida red tide" dinoflagellate Karenia brevis that has undergone a tertiary plastid endosymbiosis. Comparative analyses identified 30 nuclear-encoded plastid-targeted proteins in this chromalveolate that originated via endosymbiotic or horizontal gene transfer (HGT) from multiple different sources. We identify a fundamental divide between plant/red algal and chromalveolate plastid proteomes that reflects a history of mixotrophy in the latter group resulting in a highly chimeric proteome. Loss of phagocytosis in the "red" and "green" clades effectively froze their proteomes, whereas chromalveolate lineages retain the ability to engulf prey allowing them to continually recruit new, potentially adaptive genes through subsequent endosymbioses and HGT. One of these genes is an electron transfer protein (plastocyanin) of green algal origin in K. brevis that likely allows this species to thrive under conditions of iron depletion.
Similar articles
-
Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates.Mol Biol Evol. 2006 Mar;23(3):663-74. doi: 10.1093/molbev/msj075. Epub 2005 Dec 15. Mol Biol Evol. 2006. PMID: 16357039
-
Tertiary endosymbiosis driven genome evolution in dinoflagellate algae.Mol Biol Evol. 2005 May;22(5):1299-308. doi: 10.1093/molbev/msi118. Epub 2005 Mar 2. Mol Biol Evol. 2005. PMID: 15746017
-
Eukaryotic and eubacterial contributions to the establishment of plastid proteome estimated by large-scale phylogenetic analyses.Mol Biol Evol. 2010 Mar;27(3):581-90. doi: 10.1093/molbev/msp273. Epub 2009 Nov 12. Mol Biol Evol. 2010. PMID: 19910386
-
Chromalveolates and the evolution of plastids by secondary endosymbiosis.J Eukaryot Microbiol. 2009 Jan-Feb;56(1):1-8. doi: 10.1111/j.1550-7408.2008.00371.x. J Eukaryot Microbiol. 2009. PMID: 19335769 Review.
-
Role of horizontal gene transfer in the evolution of photosynthetic eukaryotes and their plastids.Methods Mol Biol. 2009;532:501-15. doi: 10.1007/978-1-60327-853-9_29. Methods Mol Biol. 2009. PMID: 19271204 Review.
Cited by
-
Patterns in evolutionary origins of heme, chlorophyll a and isopentenyl diphosphate biosynthetic pathways suggest non-photosynthetic periods prior to plastid replacements in dinoflagellates.PeerJ. 2018 Aug 3;6:e5345. doi: 10.7717/peerj.5345. eCollection 2018. PeerJ. 2018. PMID: 30083465 Free PMC article.
-
Gain and loss of elongation factor genes in green algae.BMC Evol Biol. 2009 Feb 12;9:39. doi: 10.1186/1471-2148-9-39. BMC Evol Biol. 2009. PMID: 19216746 Free PMC article.
-
The origin of plastids.Philos Trans R Soc Lond B Biol Sci. 2008 Aug 27;363(1504):2675-85. doi: 10.1098/rstb.2008.0050. Philos Trans R Soc Lond B Biol Sci. 2008. PMID: 18468982 Free PMC article.
-
Broadly sampled multigene trees of eukaryotes.BMC Evol Biol. 2008 Jan 18;8:14. doi: 10.1186/1471-2148-8-14. BMC Evol Biol. 2008. PMID: 18205932 Free PMC article.
-
Brevetoxin (PbTx-2) influences the redox status and NPQ of Karenia brevis by way of thioredoxin reductase.Harmful Algae. 2018 Jan;71:29-39. doi: 10.1016/j.hal.2017.11.004. Harmful Algae. 2018. PMID: 29306394 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources