Population structure and gene evolution in Saccharomyces cerevisiae
- PMID: 16879422
- DOI: 10.1111/j.1567-1364.2006.00059.x
Population structure and gene evolution in Saccharomyces cerevisiae
Abstract
The fully sequenced genomes of four species within the Saccharomyces sensu stricto complex provide a wealth of information for molecular-evolutionary inference. Yet virtually nothing is known about population-genetic variation within these species, including the molecular-biological and genetic-model organism S. cerevisiae. Here we investigate the population-genetic variation and population structure of S. cerevisiae by sequencing the four loci CDC19, PHD1, FZF1 and SSU1 in 27 strains. Sequence analysis demonstrates a distinct population structure in S. cerevisiae, distinguishing strains collected from a Pennsylvanian oak forest and strains collected from vineyards, perhaps due to ecological rather than geographic factors. The low level of conflict observed between the gene trees estimated for each locus implies moderate recombination in nature. High polymorphism in the gene SSU1 provides evidence of diversifying selection on its protein product, a sulfite exporter, perhaps associated with the use of sulfur-based fungicides in vineyards. FZF1, encoding a transcription factor regulating the expression level of SSU1, displays even greater polymorphism. This, the first multilocus sequence study of population structure in natural isolates of S. cerevisiae, is the first study to demonstrate population structure within S. cerevisiae, and the first study to detect historical selection on a locus important to the natural history of wine yeast.
Similar articles
-
Mixing of vineyard and oak-tree ecotypes of Saccharomyces cerevisiae in North American vineyards.Mol Ecol. 2013 Jun;22(11):2917-30. doi: 10.1111/mec.12155. Epub 2013 Jan 3. Mol Ecol. 2013. PMID: 23286354 Free PMC article.
-
[Molecular evolution of the sulphite efflux gene SSU1 in Saccharomyces cerevisiae].Yi Chuan. 2013 Nov;35(11):1317-26. doi: 10.3724/sp.j.1005.2013.01317. Yi Chuan. 2013. PMID: 24579315 Chinese.
-
A new chromosomal rearrangement improves the adaptation of wine yeasts to sulfite.Environ Microbiol. 2019 May;21(5):1771-1781. doi: 10.1111/1462-2920.14586. Epub 2019 Mar 25. Environ Microbiol. 2019. PMID: 30859719
-
Evolutionary relationships between Saccharomyces cerevisiae and other fungal species as determined from genome comparisons.Rev Iberoam Micol. 2005 Dec;22(4):217-22. doi: 10.1016/s1130-1406(05)70046-2. Rev Iberoam Micol. 2005. PMID: 16499414 Review.
-
Ecological and evolutionary genomics of Saccharomyces cerevisiae.Mol Ecol. 2006 Mar;15(3):575-91. doi: 10.1111/j.1365-294X.2006.02778.x. Mol Ecol. 2006. PMID: 16499686 Review.
Cited by
-
QTL mapping of the production of wine aroma compounds by yeast.BMC Genomics. 2012 Oct 30;13:573. doi: 10.1186/1471-2164-13-573. BMC Genomics. 2012. PMID: 23110365 Free PMC article.
-
The spatial scale of genetic differentiation in a model organism: the wild yeast Saccharomyces paradoxus.Philos Trans R Soc Lond B Biol Sci. 2006 Nov 29;361(1475):1941-6. doi: 10.1098/rstb.2006.1922. Philos Trans R Soc Lond B Biol Sci. 2006. PMID: 17028086 Free PMC article.
-
Whole-genome sequencing from the New Zealand Saccharomyces cerevisiae population reveals the genomic impacts of novel microbial range expansion.G3 (Bethesda). 2021 Jan 18;11(1):jkaa027. doi: 10.1093/g3journal/jkaa027. G3 (Bethesda). 2021. PMID: 33561237 Free PMC article.
-
Incipient balancing selection through adaptive loss of aquaporins in natural Saccharomyces cerevisiae populations.PLoS Genet. 2010 Apr 1;6(4):e1000893. doi: 10.1371/journal.pgen.1000893. PLoS Genet. 2010. PMID: 20369021 Free PMC article.
-
Diverse Lineages of Candida albicans Live on Old Oaks.Genetics. 2019 Jan;211(1):277-288. doi: 10.1534/genetics.118.301482. Epub 2018 Nov 21. Genetics. 2019. PMID: 30463870 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases