Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar 15;155(3):193-202.
doi: 10.1016/j.resp.2006.06.006. Epub 2006 Jun 23.

Hypoxic ventilatory responses in rats after hypercapnic hyperoxia and intermittent hyperoxia

Affiliations

Hypoxic ventilatory responses in rats after hypercapnic hyperoxia and intermittent hyperoxia

Ryan W Bavis et al. Respir Physiol Neurobiol. .

Abstract

Perinatal hyperoxia attenuates the adult hypoxic ventilatory response in rats. Hyperoxia might elicit this plasticity by inhibiting chemoreceptor activity during early life. Thus, we hypothesized that stimulating chemoreceptors with CO(2) during hyperoxia or interrupting hyperoxia with periods of normoxia would reduce the effects of hyperoxia on the hypoxic ventilatory response. Rats were born and raised in 60% O(2) for the first two postnatal weeks. Two groups were simultaneously exposed to either sustained hypercapnia (5% CO(2)) or intermittent hypercapnia (alternating 1-h exposures to 0 and 7.5% CO(2)) while another group was exposed to only intermittent hyperoxia (alternating 1-h exposures to 21 and 60% O(2)). Hypoxic ventilatory responses were assessed at 6-10 weeks of age by whole-body plethysmography. Rats exposed to intermittent hypercapnia during hyperoxia or to intermittent hyperoxia exhibited greater increases in ventilation-to-metabolism ratio ( VE/VO2 ) in response to 12.5% O(2) than rats exposed to hyperoxia alone (both P<0.05), although responses were generally less than those of normoxia-reared controls; a similar trend was observed for rats exposed to sustained hypercapnia during hyperoxia (P=0.053). These data suggest that activity-dependent mechanisms contribute to hyperoxia-induced developmental plasticity, although contributions from additional mechanisms cannot be excluded.

PubMed Disclaimer

Publication types

LinkOut - more resources