Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Aug 21;95(4):515-9.
doi: 10.1038/sj.bjc.6603298. Epub 2006 Aug 1.

Mapping loss of heterozygosity in normal human breast cells from BRCA1/2 carriers

Affiliations

Mapping loss of heterozygosity in normal human breast cells from BRCA1/2 carriers

C L Clarke et al. Br J Cancer. .

Abstract

We have studied loss of heterozygosity at the BRCA1 and BRCA2 loci in 992 normal cell clones derived from topographically defined areas of normal tissue in four samples from BRCA1/BRCA2 mutation carriers. The frequency of loss of heterozygosity in the clones was low (1.01%), but it was found in all four samples, whether or not a tumour was present. Topographical mapping revealed that the genetic changes were clustered in some breast samples. Our study confirms the previous finding that a field of genetic instability can exist around a tumour, suggesting that sufficient tissue must be removed at surgery to avoid local recurrence. We also demonstrate that such a field of genetic change can exist in morphologically normal tissue before a tumour develops and, for the first time, we demonstrate that the field is of a size greater than one terminal duct-lobular unit. The genetic changes are not identical, however, which suggests that genetic instability in these regions may play an early role in tumour development. We also confirm and extend our original observation of loss of the wild-type BRCA1 allele in some clones, and loss of the mutant allele in others, demonstrating that loss of either allele is a stochastic event.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Distribution of LOH detected in areas of histologically normal tissue of a mastectomy specimen (sample 3). Areas of tissue from which cells were cloned are shown in white, tumour is shown in black (T). Wt=loss from wild type allele, mut=loss from mutant allele.
Figure 2
Figure 2
Loss of heterozygosity in normal cell clones demonstrated by amplification of microsatellites D17s1323 (A) and D13s267 (B). The normal tissue control for each sample shows two allele peaks. The ‘normal’ clones from samples 3 and 4 each demonstrate loss of one allele (arrow).

Similar articles

Cited by

References

    1. Buerger H, Otterbach F, Simon R, Poremba C, Diallo R, Decker T, Riethdorf L, Brinkschmidt C, Dockhorn-Dworniczak B, Boecker W (1999a) Comparative genomic hybridization of ductal carcinoma in situ of the breast-evidence of multiple genetic pathways. J Pathol 187: 396–402 - PubMed
    1. Buerger H, Otterbach F, Simon R, Schafer KL, Poremba C, Diallo R, Brinkschmidt C, Dockhorn-Dworniczak B, Boecker W (1999b) Different genetic pathways in the evolution of invasive breast cancer are associated with distinct morphological subtypes. J Pathol 189: 521–526 - PubMed
    1. Buerger H, Simon R, Schafer KL, Diallo R, Littmann R, Poremba C, van Diest PJ, Dockhorn-Dworniczak B, Bocker W (2000) Genetic relation of lobular carcinoma in situ, ductal carcinoma in situ, and associated invasive carcinoma of the breast. Mol Pathol 53: 118–121 - PMC - PubMed
    1. Cavalli LR, Singh B, Isaacs C, Dickson RB, Haddad BR (2004) Loss of heterozygosity in normal breast epithelial tissue and benign breast lesions in BRCA1/2 carriers with breast cancer. Cancer Genet Cytogenet 149: 38–43 - PubMed
    1. Collins N, McManus R, Wooster R, Mangion J, Seal S, Lakhani SR, Ormiston W, Daly PA, Ford D, Easton DF, Stratton MR (1995) Consistent loss of the wild type allele in breast cancers from a family linked to the BRCA2 gene on chromosome 13q12–13. Oncogene 10: 1673–1675 - PubMed

Publication types