Molecular fingerprinting of Cryptosporidium oocysts isolated during water monitoring
- PMID: 16885295
- PMCID: PMC1538703
- DOI: 10.1128/AEM.02906-05
Molecular fingerprinting of Cryptosporidium oocysts isolated during water monitoring
Abstract
We developed and validated a PCR-based method for identifying Cryptosporidium species and/or genotypes present on oocyst-positive microscope slides. The method involves removing coverslips and oocysts from previously examined slides followed by DNA extraction. We tested four loci, the 18S rRNA gene (N18SDIAG and N18SXIAO), the Cryptosporidium oocyst wall protein (COWP) gene (STN-COWP), and the dihydrofolate reductase (dhfr) gene (by multiplex allele-specific PCR), for amplifying DNA from low densities of Cryptosporidium parvum oocysts experimentally seeded onto microscope slides. The N18SDIAG locus performed consistently better than the other three tested. Purified oocysts from humans infected with C. felis, C. hominis, and C. parvum and commercially purchased C. muris were used to determine the sensitivities of three loci (N18SDIAG, STN-COWP, and N18SXIAO) to detect low oocyst densities. The N18SDIAG primers provided the greatest number of positive results, followed by the N18SXIAO primers and then the STN-COWP primers. Some oocyst-positive slides failed to generate a PCR product at any of the loci tested, but the limit of sensitivity is not entirely based on oocyst number. Sixteen of 33 environmental water monitoring Cryptosporidium slides tested (oocyst numbers ranging from 1 to 130) contained mixed Cryptosporidium species. The species/genotypes most commonly found were C. muris or C. andersoni, C. hominis or C. parvum, and C. meleagridis or Cryptosporidium sp. cervine, ferret, and mouse genotypes. Oocysts on one slide contained Cryptosporidium muskrat genotype II DNA.
Similar articles
-
A rapid method for extracting oocyst DNA from Cryptosporidium-positive human faeces for outbreak investigations.J Microbiol Methods. 2006 Jun;65(3):512-24. doi: 10.1016/j.mimet.2005.09.010. Epub 2005 Nov 10. J Microbiol Methods. 2006. PMID: 16290112
-
Identification of Cryptosporidium spp. oocysts in United Kingdom noncarbonated natural mineral waters and drinking waters by using a modified nested PCR-restriction fragment length polymorphism assay.Appl Environ Microbiol. 2003 Jul;69(7):4183-9. doi: 10.1128/AEM.69.7.4183-4189.2003. Appl Environ Microbiol. 2003. PMID: 12839797 Free PMC article.
-
An evaluation of primers amplifying DNA targets for the detection of Cryptosporidium spp. using C. parvum HNJ-1 Japanese isolate in water samples.Parasitol Res. 2007 Sep;101(4):951-62. doi: 10.1007/s00436-007-0567-y. Epub 2007 May 19. Parasitol Res. 2007. PMID: 17514380
-
Biology, persistence and detection of Cryptosporidium parvum and Cryptosporidium hominis oocyst.Water Res. 2004 Feb;38(4):818-62. doi: 10.1016/j.watres.2003.10.012. Water Res. 2004. PMID: 14769405 Review.
-
[New methods for the diagnosis of Cryptosporidium and Giardia].Parassitologia. 2004 Jun;46(1-2):151-5. Parassitologia. 2004. PMID: 15305706 Review. Italian.
Cited by
-
Cryptosporidium hominis infection diagnosed by real-time PCR-RFLP.Korean J Parasitol. 2013 Jun;51(3):353-5. doi: 10.3347/kjp.2013.51.3.353. Epub 2013 Jun 30. Korean J Parasitol. 2013. PMID: 23864748 Free PMC article.
-
CP2 gene as a useful viability marker for Cryptosporidium parvum.Parasitol Res. 2008 Feb;102(3):381-7. doi: 10.1007/s00436-007-0772-8. Epub 2007 Dec 1. Parasitol Res. 2008. PMID: 18060431
-
Detection and resolution of Cryptosporidium species and species mixtures by genus-specific nested PCR-restriction fragment length polymorphism analysis, direct sequencing, and cloning.Appl Environ Microbiol. 2011 Jun;77(12):3998-4007. doi: 10.1128/AEM.02706-10. Epub 2011 Apr 15. Appl Environ Microbiol. 2011. PMID: 21498746 Free PMC article.
-
Glycoproteins and Gal-GalNAc cause Cryptosporidium to switch from an invasive sporozoite to a replicative trophozoite.Int J Parasitol. 2016 Jan;46(1):67-74. doi: 10.1016/j.ijpara.2015.09.001. Epub 2015 Sep 30. Int J Parasitol. 2016. PMID: 26432292 Free PMC article.
-
Aged HCT-8 cell monolayers support Cryptosporidium parvum infection.Appl Environ Microbiol. 2007 Dec;73(23):7548-51. doi: 10.1128/AEM.01579-07. Epub 2007 Oct 12. Appl Environ Microbiol. 2007. PMID: 17933914 Free PMC article.
References
-
- Cacciò, S. M., R. C. A. Thompson, J. McLauchlin, and H. V. Smith. 2005. Unravelling Cryptosporidium and Giardia epidemiology. Trends Parasitol. 21:430-437. - PubMed
-
- Fayer, R., M. Santin, M. Trout, and E. Greiner. 2006. Prevalence of species and genotypes of Cryptosporidium found in 1-2-year-old dairy cattle in the eastern United States. Vet. Parasitol. 135:105-112. - PubMed
-
- Fayer, R., M. Santin, and L. Xiao. 2005. Cryptosporidium bovis n. sp. (Apicomplexa: Cryptosporidiidae) in cattle (Bos taurus). J. Parasitol. 91:624-629. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources