Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Aug 1;66(15):7741-7.
doi: 10.1158/0008-5472.CAN-05-3766.

Inhibitory effects of B cells on antitumor immunity

Affiliations

Inhibitory effects of B cells on antitumor immunity

Satoshi Inoue et al. Cancer Res. .

Abstract

B-cell functions in antitumor immunity are not well understood. In this study, we evaluated the role of B cells in the development of antitumor immunity using Friend murine leukemia virus gag-expressing mouse EL-4 (EL-4 gag), D5 mouse melanoma, or MCA304 mouse sarcoma cells. To screen tumors for susceptibility to B-cell-deficient immune environments, spleen cells from naive C57BL/6 [wild-type (WT)] and B-cell knockout (BKO) mice were cultured with irradiated tumor cells in vitro. When cells were stimulated with EL-4 gag or D5 (but not MCA304 tumors), IFN-gamma production from CD8 T cells and natural killer cells was markedly decreased in WT compared with BKO cultures. IFN-gamma production was correlated with CD40 ligand expression on the tumor and inversely with interleukin-10 (IL-10) production by B cells. Sorted WT B cells produced more IL-10 than CD40 knockout (CD40KO) B cells when cocultured with EL-4 gag or D5 (but not MCA304). IFN-gamma production by BKO cells was reduced by the addition of sorted naive WT B cells (partially by CD40KO B cells) or recombinant mouse IL-10. In vivo tumor progression mirrored in vitro studies in that WT mice were unable to control tumor growth whereas EL-4 gag and D5 tumors (but not MCA304) were eliminated in BKO mice. Robust in vivo antitumor CTLs developed only in BKO tumor-challenged mice. Our studies provide the first mechanistic basis for the concept that B-cell depletion could therapeutically enhance antitumor immune responses to certain tumors by decreasing IL-10 production from B cells.

PubMed Disclaimer

Comment in

  • Inhibition of antitumor immunity by B cells.
    Rosenblatt J, Zhang YD, Tadmor T. Rosenblatt J, et al. Cancer Res. 2007 May 15;67(10):5058-9; author reply 5059. doi: 10.1158/0008-5472.CAN-06-3903. Cancer Res. 2007. PMID: 17510442 No abstract available.

Publication types

LinkOut - more resources