Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Oct;1(5):275-81.
doi: 10.1006/anae.1995.1027.

Co-culture of Bifidobacterium adolescentis and Bacteroides thetaiotaomicron in arabinogalactan-limited chemostats: effects of dilution rate and pH

Affiliations

Co-culture of Bifidobacterium adolescentis and Bacteroides thetaiotaomicron in arabinogalactan-limited chemostats: effects of dilution rate and pH

G T Macfarlane et al. Anaerobe. 1995 Oct.

Abstract

The effects of dilution rate (D = 0.04-0.38/h) and pH (5.0-6.5) on co-cultures of Bifidobacterium adolescentis and Bacteroides thetaiotaomicron were studied in arabinogalactan-limited chemostats. B. thetaiotaomicron outcompeted B. adolescentis at all dilution rates at culture pH values between 5.0 and 6.0, although the bifidobacterium was always detected in the fermenters. At pH 6.5, however, B. adolescentis predominated in co-cultures at dilution rates above 0.24/h. Arabinogalactan degrading enzymes (beta-galactosidase, alpha-arabinofuranosidase) were strongly catabolite repressed in bacteroides at high dilution rates, but were constitutive and growth rate-associated in B. adolescentis. The increased competitiveness of B. adolescentis at high specific growth rates was not related to its ability to synthesise increased levels of depolymerising enzymes. Measurements of residual carbohydrate in pure and mixed culture chemostats showed that the bacteroides extensively digested the galactose backbone of the polymer, and to a lesser degree, the arabinose sidechains. Nevertheless, arabinose monomers and oligosaccharides (d.p. < 10) accumulated in these cultures under all growth conditions. In contrast, the bifidobacterium utilized considerably less arabinogalactan than the bacteroides, and this was reflected in the mixed culture studies. These experiments demonstrate that B. thetaiotaomicron was able to compete most successfully for this plant cell wall polysaccharide under nutritional, physiological and environmental conditions broadly similar to those encountered in the human colon, and indicate the existence of synergistic interactions between the two organisms that were growth rate dependent.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources