Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Aug 15;177(4):2384-90.
doi: 10.4049/jimmunol.177.4.2384.

Activation of NFAT signal in vivo leads to osteopenia associated with increased osteoclastogenesis and bone-resorbing activity

Affiliations

Activation of NFAT signal in vivo leads to osteopenia associated with increased osteoclastogenesis and bone-resorbing activity

Fumiyo Ikeda et al. J Immunol. .

Abstract

The transcription factor family member NFAT plays an important role in the regulation of osteoclast differentiation. However, the role of NFAT in osteoclasts in vivo is still not fully understood. Thus, we generated transgenic mice in which constitutively active-NFAT1/NFATc2 (CA-NFAT1) is specifically expressed in the osteoclast lineage, using the tartrate-resistant acid phosphatase gene promoter. Both x-ray and histological analyses demonstrated an osteopenic bone phenotype in the CA-NFAT1 transgenic mice, whereas the number of tartrate-resistant acid phosphatase-positive osteoclasts was markedly higher in the long bones of these mice. Furthermore, the bone-resorbing activity of mature osteoclasts derived from the transgenic mice was much higher than that of wild-type mice. Interestingly, the introduction of CA-NFAT1 into osteoclasts or RAW264 cells increased the expression and activity of c-Src and stimulated actin ring formation. In contrast, CA-NFAT1 or GFP-tagged VIVIT peptide, a specific inhibitor of NFAT, did not affect the survival of mature osteoclasts. Collectively, our data indicate that NFAT controls bone resorption in vivo by stimulating the differentiation and functioning of osteoclasts but not their survival.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources