Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Sep;20(11):1889-91.
doi: 10.1096/fj.05-5189fje. Epub 2006 Aug 4.

Nitric oxide regulates mitochondrial oxidative stress protection via the transcriptional coactivator PGC-1alpha

Affiliations

Nitric oxide regulates mitochondrial oxidative stress protection via the transcriptional coactivator PGC-1alpha

Sara Borniquel et al. FASEB J. 2006 Sep.

Abstract

Nitric oxide (NO) has both prooxidant and antioxidant activities in the endothelium; however, the molecular mechanisms involved are still a matter of controversy. PGC-1alpha [peroxisome proliferators-activated receptor (PPAR) gamma coactivator 1-alpha] induces the expression of several members of the mitochondrial reactive oxygen species (ROS) detoxification system. Here, we show that NO regulates this system through the modulation of PGC-1alpha expression. Short-term (<12 h) treatment of endothelial cells with NO donors down-regulates PGC-1alpha expression, whereas long-term (>24 h) treatment up-regulates it. Treatment with the NOS inhibitor l-NAME has the opposite effect. Down-regulation of PGC-1alpha by NO is mediated by protein kinase G (PKG). It is blocked by the soluble guanylate cyclase (sGC) inhibitor ODQ and the PKG inhibitor KT5823, and mimicked by the cGMP analog 8-Br-cGMP. Changes in PGC-1alpha expression are in all cases paralleled by corresponding variations in the mitochondrial ROS detoxification system. Cells that transiently overexpress PGC-1alpha from the cytomeglovirus (CMV) promoter respond poorly to NO donors. Analysis of tissues from eNOS(-/-) mice showed reduced levels of PGC-1alpha and the mitochondrial ROS detoxification system. These data suggest that NO can regulate the mitochondrial ROS detoxification system both positively and negatively through PGC-1alpha.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources