Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Oct 6;281(40):30143-51.
doi: 10.1074/jbc.M606541200. Epub 2006 Aug 6.

Excitation-contraction coupling in airway smooth muscle

Affiliations
Free article

Excitation-contraction coupling in airway smooth muscle

Wanglei Du et al. J Biol Chem. .
Free article

Abstract

Excitation-contraction (EC) coupling in striated muscles is mediated by the cardiac or skeletal muscle isoform of voltage-dependent L-type Ca(2+) channel (Ca(v)1.2 and Ca(v)1.1, respectively) that senses a depolarization of the cell membrane, and in response, activates its corresponding isoform of intracellular Ca(2+) release channel/ryanodine receptor (RyR) to release stored Ca(2+), thereby initiating muscle contraction. Specifically, in cardiac muscle following cell membrane depolarization, Ca(v)1.2 activates cardiac RyR (RyR2) through an influx of extracellular Ca(2+). In contrast, in skeletal muscle, Ca(v)1.1 activates skeletal muscle RyR (RyR1) through a direct physical coupling that negates the need for extracellular Ca(2+). Since airway smooth muscle (ASM) expresses Ca(v)1.2 and all three RyR isoforms, we examined whether a cardiac muscle type of EC coupling also mediates contraction in this tissue. We found that the sustained contractions of rat ASM preparations induced by depolarization with KCl were indeed partially reversed ( approximately 40%) by 200 mum ryanodine, thus indicating a functional coupling of L-type channels and RyRs in ASM. However, KCl still caused transient ASM contractions and stored Ca(2+) release in cultured ASM cells without extracellular Ca(2+). Further analyses of rat ASM indicated that this tissue expresses as many as four L-type channel isoforms, including Ca(v)1.1. Moreover, Ca(v)1.1 and RyR1 in rat ASM cells have a similar distribution near the cell membrane in rat ASM cells and thus may be directly coupled as in skeletal muscle. Collectively, our data implicate that EC-coupling mechanisms in striated muscles may also broadly transduce diverse smooth muscle functions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources