Membrane-membrane interactions: parallel membranes or patterned discrete contacts
- PMID: 1689180
- DOI: 10.1016/0005-2736(90)90032-j
Membrane-membrane interactions: parallel membranes or patterned discrete contacts
Abstract
Theoretical and experimental studies of thin liquid films show that, under certain conditions, the film thickness can undergo a sudden transition which gives a stable narrower film or ends in film rupture at spatially periodic points. Theoretical analysis have also indicated that similar transitions might arise in the thin aqueous layer separating interacting membranes. Experiments described here show spatially periodic intermembrane contact points and suggest that spontaneous rapid growth of fluctuations can occur on an intermembrane water layer. Normal and pronase pretreated erythrocytes were exposed to 2% Dextran (450,000 Mr) and the resultant aggregates were examined by light and transmission electron microscopy. Cell electrophoresis measurements were used as an index of pronase modification of the glycocalyx. Erythrocytes exposed to dextran revealed a uniform intercellular separation of parallel membranes. This equilibrium between attractive and repulsive intermembrane forces is consistent with the established Derjaguin, Landau, Verwey, Overbeek (DLVO) model for colloidal particle interaction. In contrast to the above uniform separation a spatial pattern of discrete contact regions was observed in cells coming together in dextran following pronase pretreatment. The lateral contact separation distance was 3.0 microns for mild pronase pretreatment and decreased to 0.85 micron for more extensive pronase pretreatments. The system examined here is seen as a useful experimental model in which to study the principles involved in producing either uniform separation or point contacts between interacting membranes.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources