Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Aug 7;25(34):4683-96.
doi: 10.1038/sj.onc.1209595.

Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt

Affiliations
Review

Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt

R B Robey et al. Oncogene. .

Abstract

Cell survival has been closely linked to both trophic growth factor signaling and cellular metabolism. Such couplings have obvious physiologic and pathophysiologic implications, but their underlying molecular bases remain incompletely defined. As a common mediator of both the metabolic and anti-apoptotic effects of growth factors, the serine/threonine kinase Akt - also known as protein kinase B or PKB - is capable of regulating and coordinating these inter-related processes. The glucose dependence of the antiapoptotic effects of growth factors and Akt plus a strong correlation between Akt-regulated mitochondrial hexokinase association and apoptotic susceptibility suggest a major role for hexokinases in these effects. Mitochondrial hexokinases catalyse the first obligatory step of glucose metabolism and directly couple extramitochondrial glycolysis to intramitochondrial oxidative phosphorylation, and are thus well suited to play this role. The ability of Akt to regulate energy metabolism appears to have evolutionarily preceded the capacity to control cell survival. This suggests that Akt-dependent metabolic regulatory functions may have given rise to glucose-dependent antiapoptotic effects that evolved as an adaptive sensing system involving hexokinases and serve to ensure mitochondrial homeostasis, thereby coupling metabolism to cell survival. We hypothesize that the enlistment of Akt and hexokinase in the control of mammalian cell apoptosis evolved as a response to the recruitment of mitochondria to the apoptotic cascade. The central importance of mitochondrial hexokinases in cell survival also suggests that they may represent viable therapeutic targets in cancer.

PubMed Disclaimer

Publication types