Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Oct 6;281(40):30036-45.
doi: 10.1074/jbc.M604674200. Epub 2006 Aug 7.

Ribosomal stress couples the unfolded protein response to p53-dependent cell cycle arrest

Affiliations
Free article

Ribosomal stress couples the unfolded protein response to p53-dependent cell cycle arrest

Fang Zhang et al. J Biol Chem. .
Free article

Abstract

Protein misfolding in the endoplasmic reticulum (ER) triggers a signaling pathway termed the unfolded protein response path-way (UPR). UPR signaling is transduced through the transmembrane ER effectors PKR-like ER kinase (PERK), inositol requiring kinase-1 (IRE-1), and activating transcription factor 6 (ATF6). PERK activation triggers phosphorylation of eIF2alpha leading to repression of protein synthesis, thereby relieving ER protein load and directly inhibiting cyclin D1 translation thereby contributing to cell cycle arrest. However, PERK(-/-) murine embryonic fibroblasts have an attenuated G(1)/S arrest that is not attributable to cyclin D1 loss, suggesting a cyclin D1-independent mechanism. Here we show that the UPR triggers p53 accumulation and activation. UPR induction promotes enhanced interaction between the ribosome proteins (rpL5, rpL11, and rpL23) and Hdm2 in a PERK-dependent manner. Interaction with ribosomal proteins results in inhibition of Hdm2-mediated ubiquitination and degradation of p53. Our data demonstrate that ribosomal subunit:Hdm2 association couples the unfolded protein response to p53-dependent cell cycle arrest.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources