Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jun;31(3):287-92.
doi: 10.1007/s00264-006-0182-z. Epub 2006 Aug 2.

Morphological analysis of the proximal femur using quantitative computed tomography

Affiliations

Morphological analysis of the proximal femur using quantitative computed tomography

James B Stiehl et al. Int Orthop. 2007 Jun.

Abstract

The anatomy of the proximal femur was studied in 35 specimens using quantitative computed tomography (QCT) and compared with anatomical sections studied by plane radiography and gross dissection. We found the primary supporting structure of the femoral head to be the primary compressive strut, which is a dense column of trabecular bone projecting from the pressure buttress of the medial femoral neck to the epiphyseal scar. Trabecular bone mushroomed from the epiphyseal scar and terminated at right angles to the cortex of the femoral head. We believe the primary compressive strut is the predominant load-bearing structure connecting the femoral head to the femoral neck, as many specimens lacked continuity of the head cortex to the femoral neck. Based on the CT number, the primary compressive strut had similar bone density to cortical structures such as the lesser trochanter, calcar femorale and posterior lateral femoral cortex. Ward's triangle lacked structural integrity in many cases, and we doubt the significance of tensile trabculae for sharing load. Surgical techniques such as femoral fracture fixation, resurfacing hip arthroplasty and allograft transplantation may benefit from this knowledge.

L’anatomie de l’extrémité supérieure du fémur a été étudiée chez 35 sujets à partir d’études de type scanner et comparée avec des sections anatomiques, des radiographies et des dissections. Nous avons étudié les différentes structures qui supporte la tête fémorale. Les coupes scanner montrent que la densité osseuse de ces structures est identique à celle du trochanter et de la corticale de la face postérieure du fémur. Les techniques chirurgicales concernant l’extrémité supérieure du fémur, fixation de fractures, resurfaçage, arthroplastie de resurfaçage et al. logreffes doivent bénéficier de ce travail anatomique et radiologique.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Coronal section of anatomical proximal femoral specimen reveals: a trabecular mushroom of femoral head; b primary compressive strut; c pressure buttress of the medial femoral neck; d Ward’s triangle
Fig. 2
Fig. 2
Anterior-posterior view of dissected anatomical specimen demonstrates: a primary compressive strut; b pressure buttress of the medial femoral neck; c calcar femorale
Fig. 3
Fig. 3
Proximal femoral head/neck specimen after all soft cancellous bone is removed reveals: a trabecular mushroom; b medial femoral neck cortex. Note the “dumbbell” extensions toward the anterior and posterior walls of the acetabulum
Fig. 4
Fig. 4
Lateral view of dissected anatomical specimen reveals: a pressure buttress of the medial femoral neck; b calcar femorale

Similar articles

Cited by

References

    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1359/jbmr.2000.15.12.2297', 'is_inner': False, 'url': 'https://doi.org/10.1359/jbmr.2000.15.12.2297'}, {'type': 'PubMed', 'value': '11127194', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/11127194/'}]}
    2. Beck TJ, Looker AC, Ruff CB, Sievanen H, Wahner HW (2000) Structural trends in the aging femoral neck and proximal shaft: analysis ot the Third National Health and Nutrition Examination Survey dual-energy X-ray absorptiometry data. J Bone Miner Res 15:2297–2304 - PubMed
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '2618148', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/2618148/'}]}
    2. Bergmann G, Rohlmann A, Graichen F (1989) Invivo messung der Hüftgelenksbelastung: Teil: Krankengymnastik. Z Orthop 127:672–679 - PubMed
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '7446022', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/7446022/'}]}
    2. Brown TD, Ferguson AB (1980) Mechanical property distributions in the cancellous bone of the human proximal femur. Acta Scand Ortho 51:429–437 - PubMed
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '8570492', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/8570492/'}]}
    2. Chandler HP (1995) Structural grafting of the acetabulum. Orthopaedics 18:863–864 - PubMed
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/0021-9290(89)90091-2', 'is_inner': False, 'url': 'https://doi.org/10.1016/0021-9290(89)90091-2'}, {'type': 'PubMed', 'value': '2722894', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/2722894/'}]}
    2. Carter DR, Orr TE, Fyhrie DP (1989) Relationships between loading history and femoral cancellous bone architecture. J Biomech 22:231–244 - PubMed

MeSH terms