Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Mar;110(3):651-60.
doi: 10.1083/jcb.110.3.651.

Isolation and characterization of Chinese hamster ovary cell mutants defective in assembly of peroxisomes

Affiliations

Isolation and characterization of Chinese hamster ovary cell mutants defective in assembly of peroxisomes

T Tsukamoto et al. J Cell Biol. 1990 Mar.

Abstract

We made use of autoradiographic screening to isolate two Chinese hamster ovary (CHO) cell mutants deficient in peroxisomal dihydroxyacetonephosphate acyltransferase, a key enzyme for the biosynthesis of ether glycerolipids such as plasmalogens. Morphological analysis revealed no evidence of peroxisome in these mutants. Catalase was as active as in the normal cells but was not sedimentable. Pulse-chase radiolabeling experiments and cell-free translation of RNA demonstrated that acyl-CoA oxidase, the first enzyme of the peroxisomal beta-oxidation system, was synthesized as the 75-kD form but was not converted to 53- and 22-kD mature components that were present in the wild-type CHO cells; rather, degradation was apparent. Peroxisomal thiolase was synthesized as in normal cells but remained as a larger, 44-kD precursor, whereas maturation to the 41-kD enzyme was detected in the wild-type cells. The peroxisomal 70-kD integral membrane protein was also equally synthesized, as in the wild-type cells, and was not degraded. These results suggest that assembly of the peroxisomes is defective in the mutants, whereas the synthesis of peroxisomal proteins appears to be normal. Cell-fusion studies revealed that the two mutants are recessive to the wild-type CHO cells and belong to different complementation groups. Thus, these mutants presumably contain different lesions in gene(s) encoding factor(s) required for peroxisome assembly.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Biol Chem. 1951 Nov;193(1):265-75 - PubMed
    1. Annu Rev Cell Biol. 1985;1:489-530 - PubMed
    1. Mol Cell Biol. 1989 Jan;9(1):83-91 - PubMed
    1. J Biol Chem. 1988 Aug 15;263(23):11590-6 - PubMed
    1. EMBO J. 1988 Apr;7(4):1167-73 - PubMed

MeSH terms