The onset of brain injury and neurodegeneration triggers the synthesis of docosanoid neuroprotective signaling
- PMID: 16897369
- PMCID: PMC11520625
- DOI: 10.1007/s10571-006-9064-6
The onset of brain injury and neurodegeneration triggers the synthesis of docosanoid neuroprotective signaling
Abstract
Bioactive lipid messengers are formed through phospholipase-mediated cleavage of specific phospholipids from membrane reservoirs. Effectors that activate the synthesis of lipid messengers, include ion channels, neurotransmitters, membrane depolarization, cytokines, and neurotrophic factors. In turn, lipid messengers regulate and interact with multiple pathways, participating in the development, differentiation, function (e.g., long-term potentiation and memory), protection, and repair of cells of the nervous system. Overall, bioactive lipids participate in the regulation of synaptic function and dysfunction. Platelet-activating factor (PAF) and COX-2-synthesized PGE(2) modulate synaptic plasticity and memory. Oxidative stress disrupts lipid signaling, fosters lipid peroxidation, and initiates and propagates neurodegeneration. Lipid messengers participate in the interactions among neurons, astrocytes, oligodendrocytes, microglia, cells of the microvasculature, and other cells. A conglomerate of interrelated cells comprises the neurovascular unit. Signaling at the neurovascular unit is clearly altered in the early stages of cerebrovascular disease as well as in neurodegenerations. Here we will provide examples of how signaling by lipids regulates critical events essential for neuronal survival. We will highlight a newly identified, DHA-derived messenger, neuroprotectin D1, which attenuates oxidative stress-induced apoptosis. The specificity and potency of this novel docosanoid (neuroprotectin D1) indicate a potentially important target for therapeutic intervention.
Figures


Similar articles
-
Brain response to injury and neurodegeneration: endogenous neuroprotective signaling.Ann N Y Acad Sci. 2005 Aug;1053:137-47. doi: 10.1196/annals.1344.011. Ann N Y Acad Sci. 2005. PMID: 16179516 Review.
-
Synaptic signaling by lipids in the life and death of neurons.Mol Neurobiol. 2005;31(1-3):219-30. doi: 10.1385/MN:31:1-3:219. Mol Neurobiol. 2005. PMID: 15953823 Review.
-
Lipid signaling: sleep, synaptic plasticity, and neuroprotection.Prostaglandins Other Lipid Mediat. 2005 Sep;77(1-4):65-76. doi: 10.1016/j.prostaglandins.2005.07.001. Prostaglandins Other Lipid Mediat. 2005. PMID: 16099392 Review.
-
Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress.Brain Pathol. 2005 Apr;15(2):159-66. doi: 10.1111/j.1750-3639.2005.tb00513.x. Brain Pathol. 2005. PMID: 15912889 Free PMC article. Review.
-
Mediators of injury in neurotrauma: intracellular signal transduction and gene expression.J Neurotrauma. 1995 Oct;12(5):791-814. doi: 10.1089/neu.1995.12.791. J Neurotrauma. 1995. PMID: 8594208 Review.
Cited by
-
Dietary n-6 PUFA deprivation for 15 weeks reduces arachidonic acid concentrations while increasing n-3 PUFA concentrations in organs of post-weaning male rats.Biochim Biophys Acta. 2009 Feb;1791(2):132-9. doi: 10.1016/j.bbalip.2008.11.002. Epub 2008 Nov 27. Biochim Biophys Acta. 2009. PMID: 19073280 Free PMC article.
-
ER stress and effects of DHA as an ER stress inhibitor.Transl Stroke Res. 2013 Dec;4(6):635-42. doi: 10.1007/s12975-013-0282-1. Epub 2013 Aug 20. Transl Stroke Res. 2013. PMID: 24323417 Free PMC article. Review.
-
Chronic Repetitive Mild Traumatic Brain Injury Results in Reduced Cerebral Blood Flow, Axonal Injury, Gliosis, and Increased T-Tau and Tau Oligomers.J Neuropathol Exp Neurol. 2016 Jul;75(7):636-55. doi: 10.1093/jnen/nlw035. Epub 2016 May 31. J Neuropathol Exp Neurol. 2016. PMID: 27251042 Free PMC article.
-
Metabolite profiles correlate closely with neurobehavioral function in experimental spinal cord injury in rats.PLoS One. 2012;7(8):e43152. doi: 10.1371/journal.pone.0043152. Epub 2012 Aug 13. PLoS One. 2012. PMID: 22912814 Free PMC article.
-
Modulating the inflammatory properties of activated microglia with Docosahexaenoic acid and Aspirin.Lipids Health Dis. 2013 Feb 11;12:16. doi: 10.1186/1476-511X-12-16. Lipids Health Dis. 2013. PMID: 23398903 Free PMC article.
References
-
- Anderson, R. E., Maude, M. B., and Bok, D. (2001). Low docosahexaenoic acid levels in rod outer segment membranes of mice with rds/peripherin and P216L peripherin mutations. Invest. Ophthalmol. Vis. Sci. 42:1715–1720. - PubMed
-
- Anderson, R. E., Maude, M. B., McClellan, M., Matthes, M. T., Yasumura, D., and La Vail, M. M. (2002). Low docosahexaenoic acid levels in rod outer segments of rats with P23H and S334ter rhodopsin mutations. Mol. Vis. 8:351–358. - PubMed
-
- Anthonsen, M. W., Solhaug, A., and Johansen, B. (2001). Functional coupling between secretory and cytosolic phospholipase A2 modulates tumor necrosis factor-alpha- and interleukin-1beta-induced NF-kappa B activation. J. Biol. Chem. 276:30527–30536. - PubMed
-
- Barone, F. C., and Feuerstein, G. Z. (1999). Inflammatory mediators and stroke: new opportunities for novel therapeutics. J. Cereb. Blood Flow Metab. 19:819–834. - PubMed
-
- Basu, A., Krady, J. K., and Levison, S. W. (2004). Interleukin-1: a master regulator of neuroinflammation. J. Neurosci. Res. 78:151–156. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials