Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Nov 6;12(32):8386-95.
doi: 10.1002/chem.200600395.

Unexpected reaction of the unsaturated cluster host and catalyst [Pd3(mu3-CO)(dppm)3]2+ with the hydroxide ion: spectroscopic and kinetic evidence of an inner-sphere mechanism

Affiliations

Unexpected reaction of the unsaturated cluster host and catalyst [Pd3(mu3-CO)(dppm)3]2+ with the hydroxide ion: spectroscopic and kinetic evidence of an inner-sphere mechanism

Cyril Cugnet et al. Chemistry. .

Abstract

The title cluster, [Pd(3)(mu(3)-CO)(dppm)(3)](2+) (dppm=bis(diphenylphosphino)methane), reacts with one equivalent of hydroxide anions (OH(-)), from tetrabutylammonium hydroxide (Bu(4)NOH), to give the paramagnetic [Pd(3)(mu(3)-CO)(dppm)(3)](+) species. Reaction with another equivalent of OH(-) leads to the zero-valent compound [Pd(3)(mu(3)-CO)(dppm)(3)](0). From electron paramagnetic resonance analysis of the reaction medium using the spin-trap agent 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), the 2-tetrahydrofuryl or methyl radicals, deriving from the tetrahydrofuran (THF) or dimethyl sulfoxide (DMSO) solvent, respectively, were detected. For both [Pd(3)(mu(3)-CO)(dppm)(3)](2+) and [Pd(3)(mu(3)-CO)(dppm)(3)](+), the mechanism involves, in a first equilibrated step, the formation of a hydroxide adduct, [Pd(3)(mu(3)-CO)(dppm)(3)(OH)]((n-1)+) (n=1, 2), which reacts irreversibly with the solvent. The kinetics were resolved by means of stopped-flow experiments and are consistent with the proposed mechanism. In the presence of an excess of Bu(4)NOH, an electrocatalytic process was observed with modest turnover numbers (7-8). The hydroxide adducts [Pd(3)(mu(3)-CO)(dppm)(3)(OH)]((n-1)+) (n=1, 2), which bear important similarities to the well-known corresponding halide adducts [Pd(3)(mu(3)-CO)(dppm)(3)(mu(3)-X)](n) (X=Cl, Br, I), have been studied by using density functional theory (DFT). Although the optimised geometry for the cluster in its +2 and 0 oxidation states (i.e., cation and anion clusters, respectively) is the anticipated mu(3)-OH form, the paramagnetic species, [Pd(3)(mu(3)-CO)(dppm)(3)(OH)](0), shows a mu(2)-OH form; this suggests an important difference in electronic structure between these three species.

PubMed Disclaimer

LinkOut - more resources