Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1977 May 25;252(10):3364-70.

Identification of folate binding macromolecule in rabbit choroid plexus

  • PMID: 16898
Free article

Identification of folate binding macromolecule in rabbit choroid plexus

R Spector. J Biol Chem. .
Free article

Abstract

A macromolecular binder of folic acid and folic acid derivatives has been identified in the particulate fraction of homogenates of rabbit choroid plexus. Within the choroid plexus, there are 2.3 nmol of folate-binding activity (binder) per g of tissue. The molecular weight of the folate binder complex, separated from the particulate fraction after solubilization with Triton X-100, was 340,000 to 400,000 by Sephadex gel filtration. The partially purified binder, when freed of endogenous folates, bound equivalent amounts of both [3H]folic acid and [methyl-14C]methyltetrahydrofolic acid per mg of protein. Folic acid, homofolic acid, 5-methyltetrahydrofolic acid, and to a lesser degree, methotrexate, inhibited the binding of both [3H]folic acid and [14C]methyltetrahydrofolic acid. Binding activity, which decreased below pH = 7.0, was unaffected by pretreatment with ribonuclease but was eliminated completely by papain and a protease (Streptomyces griseus). Although dihydrofolate reductase was present in choroid plexus, the binder was distinct from dihydrofolate reductase as judged by gel filtration and methotrexate sensitivity. This high affinity binder of folates may be responsible, in part, for the rapid, saturable uptake of folic acid and methyltetrahydrofolic acid by rabbit choroid plexus in vitro.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources