Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events
- PMID: 16899658
- PMCID: PMC1557764
- DOI: 10.1101/gr.5322306
Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events
Abstract
Using 1128 protein-coding gene families from 11 completely sequenced cyanobacterial genomes, we attempt to quantify horizontal gene transfer events within cyanobacteria, as well as between cyanobacteria and other phyla. A novel method of detecting and enumerating potential horizontal gene transfer events within a group of organisms based on analyses of "embedded quartets" allows us to identify phylogenetic signal consistent with a plurality of gene families, as well as to delineate cases of conflict to the plurality signal, which include horizontally transferred genes. To infer horizontal gene transfer events between cyanobacteria and other phyla, we added homologs from 168 available genomes. We screened phylogenetic trees reconstructed for each of these extended gene families for highly supported monophyly of cyanobacteria (or lack of it). Cyanobacterial genomes reveal a complex evolutionary history, which cannot be represented by a single strictly bifurcating tree for all genes or even most genes, although a single completely resolved phylogeny was recovered from the quartets' plurality signals. We find more conflicts within cyanobacteria than between cyanobacteria and other phyla. We also find that genes from all functional categories are subject to transfer. However, in interphylum as compared to intraphylum transfers, the proportion of metabolic (operational) gene transfers increases, while the proportion of informational gene transfers decreases.
Figures







Similar articles
-
Genome reduction by deletion of paralogs in the marine cyanobacterium Prochlorococcus.Mol Biol Evol. 2011 Oct;28(10):2751-60. doi: 10.1093/molbev/msr081. Epub 2011 Apr 29. Mol Biol Evol. 2011. PMID: 21531921 Free PMC article.
-
Bayesian analysis of congruence of core genes in Prochlorococcus and Synechococcus and implications on horizontal gene transfer.PLoS One. 2014 Jan 21;9(1):e85103. doi: 10.1371/journal.pone.0085103. eCollection 2014. PLoS One. 2014. PMID: 24465485 Free PMC article.
-
Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts.PLoS Biol. 2006 Jul;4(8):e234. doi: 10.1371/journal.pbio.0040234. PLoS Biol. 2006. PMID: 16802857 Free PMC article.
-
Horizontal gene transfer in cyanobacterial signature genes.Methods Mol Biol. 2009;532:339-66. doi: 10.1007/978-1-60327-853-9_20. Methods Mol Biol. 2009. PMID: 19271195 Review.
-
Detecting lateral genetic transfer : a phylogenetic approach.Methods Mol Biol. 2008;452:457-69. doi: 10.1007/978-1-60327-159-2_21. Methods Mol Biol. 2008. PMID: 18566777 Review.
Cited by
-
Genome Mining and Evolutionary Analysis Reveal Diverse Type III Polyketide Synthase Pathways in Cyanobacteria.Genome Biol Evol. 2021 Apr 5;13(4):evab056. doi: 10.1093/gbe/evab056. Genome Biol Evol. 2021. PMID: 33739400 Free PMC article.
-
The diversity of cyanobacterial metabolism: genome analysis of multiple phototrophic microorganisms.BMC Genomics. 2012 Feb 2;13:56. doi: 10.1186/1471-2164-13-56. BMC Genomics. 2012. PMID: 22300633 Free PMC article.
-
Quartet decomposition server: a platform for analyzing phylogenetic trees.BMC Bioinformatics. 2012 Jun 7;13:123. doi: 10.1186/1471-2105-13-123. BMC Bioinformatics. 2012. PMID: 22676320 Free PMC article.
-
Life at Home and on the Roam: Genomic Adaptions Reflect the Dual Lifestyle of an Intracellular, Facultative Symbiont.mSystems. 2019 May 7;4(4):e00057-19. doi: 10.1128/mSystems.00057-19. eCollection 2019 Jul-Aug. mSystems. 2019. PMID: 31086829 Free PMC article.
-
Two unique cyanobacteria lead to a traceable approach of the first appearance of oxygenic photosynthesis.Photosynth Res. 2008 Aug;97(2):167-76. doi: 10.1007/s11120-008-9311-4. Epub 2008 Jun 21. Photosynth Res. 2008. PMID: 18568415
References
-
- Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J., Zhang J., Zhang Z., Miller W., Lipman D.J., Zhang Z., Miller W., Lipman D.J., Miller W., Lipman D.J., Lipman D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. - PMC - PubMed
-
- Andersson J.O., Sarchfield S.W., Roger A.J., Sjogren A.M., Davis L.A., Embley T.M., Sarchfield S.W., Roger A.J., Sjogren A.M., Davis L.A., Embley T.M., Roger A.J., Sjogren A.M., Davis L.A., Embley T.M., Sjogren A.M., Davis L.A., Embley T.M., Davis L.A., Embley T.M., Embley T.M. Gene transfers from Nanoarchaeota to an ancestor of diplomonads and parabasalids—Phylogenetic analyses of diplomonad genes reveal frequent lateral gene transfers affecting eukaryotes. Mol. Biol. Evol. 2005;22:85–90. - PubMed
-
- Bapteste E., Boucher Y., Leigh J., Doolittle W.F., Boucher Y., Leigh J., Doolittle W.F., Leigh J., Doolittle W.F., Doolittle W.F. Phylogenetic reconstruction and lateral gene transfer. Trends Microbiol. 2004;12:406–411. - PubMed
-
- Barker G.L., Handley B.A., Vacharapiyasophon P., Stevens J.R., Hayes P.K., Handley B.A., Vacharapiyasophon P., Stevens J.R., Hayes P.K., Vacharapiyasophon P., Stevens J.R., Hayes P.K., Stevens J.R., Hayes P.K., Hayes P.K. Allele-specific PCR shows that genetic exchange occurs among genetically diverse Nodularia (cyanobacteria) filaments in the Baltic Sea. Microbiol. 2000;146:2865–2875. - PubMed
-
- Baum B. Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon. 1992;41:3–10.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources