Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Feb;84(2):163-71.
doi: 10.1139/y05-156.

Epigallocatechin gallate preserves endothelial function by reducing the endogenous nitric oxide synthase inhibitor level

Affiliations
Comparative Study

Epigallocatechin gallate preserves endothelial function by reducing the endogenous nitric oxide synthase inhibitor level

Wei-Jun Tang et al. Can J Physiol Pharmacol. 2006 Feb.

Abstract

Asymmetric dimethylarginine (ADMA), the endogenous nitric oxide synthase inhibitor, is thought to be a key factor contributing to endothelial dysfunction. Tea catechins can cause an endothelium-dependent vasorelaxation. The present study examined the effect of epigallocatechin gallate (EGCG), the major component of tea catechins, on endothelial dysfunction induced by native low density lipoprotein (LDL) in rats and oxidized LDL (ox-LDL) in cultured endothelial cells, and whether the protective effect of EGCG is related to reduction of ADMA level. A single injection of LDL (4 mg x kg(-1), i.v.) markedly reduced endothelium-dependent relaxation and the serum nitrite/nitrate (NO) level, and increased serum concentrations of ADMA, malondialdehyde (MDA), and tumor necrosis factor-alpha (TNF-alpha). EGCG (10 or 50 mg x kg(-1), i.p.) significantly attenuated the inhibition of vasodilator response to acetylcholine and the decreased serum nitrite/nitrate level, and reduced the elevated levels of ADMA, MDA, and TNF-alpha. Exposure of endothelial cells to ox-LDL (100 microg x mL(-1)) for 24 h markedly increased the medium levels of lactate dehydrogenase (LDH), ADMA, TNF-alpha, and MDA, and decreased the level of nitrite/nitrate in the medium and the activity of dimethylarginine dimethylaminohydrolase (DDAH) in the endothelial cells. EGCG (10 and 100 microg x mL(-1)) significantly decreased the levels of LDH, ADMA, TNF-alpha, and MDA, and increased the level of nitrite/nitrate and the activity of DDAH. These results suggest that EGCG protects endothelial dysfunction induced by native LDL in vivo or by ox-LDL in endothelial cells, and the protective effect of EGCG on the endothelium is related to decrease in ADMA level via increasing of DDAH activity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources