Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 Jan 1;109(1):244-52.
doi: 10.1182/blood-2006-05-021931. Epub 2006 Aug 10.

The immunosuppressive drug FK778 induces regulatory activity in stimulated human CD4+ CD25- T cells

Affiliations
Free article
Comparative Study

The immunosuppressive drug FK778 induces regulatory activity in stimulated human CD4+ CD25- T cells

Ellen Kreijveld et al. Blood. .
Free article

Abstract

The induction of transplantation tolerance involves a T-cell-mediated process of immune regulation. In clinical transplantation, the use of immunosuppressive drugs that promote or facilitate this process would be highly desirable. Here, we investigated the tolerance-promoting potential of the immunosuppressive drug FK778, currently under development for clinical therapy. Using a human allogeneic in vitro model we showed that, upon T-cell receptor (TCR) triggering, FK778 induced a regulatory phenotype in CD4+ CD25- T cells. Purified CD4+ CD25- T cells primed in the presence of FK778 showed hyporesponsiveness upon restimulation with alloantigen in the absence of the drug. This anergic state was reversible by exogenous interleukin-2 (IL-2) and was induced independent of naturally occurring CD4+ CD25+ regulatory T cells. Pyrimidine restriction was a crucial requirement for the de novo induction of regulatory activity by FK778. The FK778-induced anergic cells showed suppressor activity in a cell-cell contact-dependent manner; were CD25(high), CD45RO+, CD27-, and CD62L-; and expressed cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), glucocorticoid-induced tumor necrosis factor receptor (GITR), and FoxP3. The cells revealed delayed p27(kip1) degradation and enhanced phosphorylation of STAT3. In conclusion, the new drug FK778 shows tolerizing potential through the induction of a regulatory T-cell subset in CD4+ CD25- T cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances