In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility
- PMID: 16903273
- DOI: 10.1021/es052069i
In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility
Abstract
Early indicators for nanoparticle-derived adverse health effects should provide a relative measure for cytotoxicity of nanomaterials in comparison to existing toxicological data. We have therefore evaluated a human mesothelioma and a rodent fibroblast cell line for in vitro cytotoxicity tests using seven industrially important nanoparticles. Their response in terms of metabolic activity and cell proliferation of cultures exposed to 0-30 ppm nanoparticles (microg g(-1)) was compared to the effects of nontoxic amorphous silica and toxic crocidolite asbestos. Solubility was found to strongly influence the cytotoxic response. The results further revealed a nanoparticle-specific cytotoxic mechanism for uncoated iron oxide and partial detoxification or recovery after treatment with zirconia, ceria, or titania. While in vitro experiments may never replace in vivo studies, the relatively simple cytotoxic tests provide a readily available pre-screening method.
Similar articles
-
Mesothelial reaction of asbestos and other irritants after intraperitoneal injection.S Afr Med J. 1975 Jan 18;49(3):87-90. S Afr Med J. 1975. PMID: 163501
-
In vitro toxicity of respirable-size particles of diatomaceous earth and crystalline silica compared with asbestos and titanium dioxide.J Occup Environ Med. 1998 Jan;40(1):29-42. doi: 10.1097/00043764-199801000-00008. J Occup Environ Med. 1998. PMID: 9467118
-
Toxicity of amorphous silica nanoparticles on eukaryotic cell model is determined by particle agglomeration and serum protein adsorption effects.Anal Bioanal Chem. 2011 May;400(5):1367-73. doi: 10.1007/s00216-011-4893-7. Epub 2011 Apr 9. Anal Bioanal Chem. 2011. PMID: 21479547
-
The Size-dependent Cytotoxicity of Amorphous Silica Nanoparticles: A Systematic Review of in vitro Studies.Int J Nanomedicine. 2020 Nov 18;15:9089-9113. doi: 10.2147/IJN.S276105. eCollection 2020. Int J Nanomedicine. 2020. PMID: 33244229 Free PMC article.
-
An update on the detoxification processes for silica particles and asbestos fibers: successess and limitations.J Toxicol Environ Health B Crit Rev. 2005 Nov-Dec;8(6):453-83. doi: 10.1080/10937400590952547. J Toxicol Environ Health B Crit Rev. 2005. PMID: 16188731 Review.
Cited by
-
Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production.Nanomedicine. 2013 May;9(4):558-69. doi: 10.1016/j.nano.2012.10.010. Epub 2012 Nov 22. Nanomedicine. 2013. PMID: 23178284 Free PMC article.
-
Bioinspired Synthesis and Characterization of Dual-Function Zinc Oxide Nanoparticles from Saccharopolyspora hirsuta: Exploring Antimicrobial and Anticancer Activities.Biomimetics (Basel). 2024 Jul 25;9(8):456. doi: 10.3390/biomimetics9080456. Biomimetics (Basel). 2024. PMID: 39194435 Free PMC article.
-
Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge.Sci Rep. 2016 May 11;6:25857. doi: 10.1038/srep25857. Sci Rep. 2016. PMID: 27166174 Free PMC article.
-
Characterization of interaction of magnetic nanoparticles with breast cancer cells.J Nanobiotechnology. 2015 Feb 26;13:16. doi: 10.1186/s12951-015-0073-9. J Nanobiotechnology. 2015. PMID: 25880445 Free PMC article.
-
Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles.Int J Nanomedicine. 2012;7:3081-97. doi: 10.2147/IJN.S32593. Epub 2012 Jun 26. Int J Nanomedicine. 2012. PMID: 22811602 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical