Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Mar;87(6):2249-53.
doi: 10.1073/pnas.87.6.2249.

Defined neurofilament, tau, and beta-amyloid precursor protein epitopes distinguish Alzheimer from non-Alzheimer senile plaques

Affiliations

Defined neurofilament, tau, and beta-amyloid precursor protein epitopes distinguish Alzheimer from non-Alzheimer senile plaques

H Arai et al. Proc Natl Acad Sci U S A. 1990 Mar.

Abstract

Eight antisera and one monoclonal antibody to synthetic peptides that corresponded to domains extending over the entire length of the beta-amyloid precursor protein (beta-APP), and an antiserum to the full-length 695-amino acid form of the beta-APP, were raised to probe the composition of the core and corona of senile plaques (SPs). We localized distinct beta-APP domains, including the beta-amyloid protein or A4 region, within the SPs of 13 end-stage Alzheimer disease (AD) and 13 age-matched control samples of hippocampus and entorhinal cortex. The composition of SPs also was probed with antibodies to defined epitopes in tau (tau) as well as the large and mid-size neurofilament (NF) proteins. The most important observations were that beta-APP domains outside the A4 region were largely restricted to SP coronas in the AD samples, together with tau and NF determinants, whereas the same epitopes were absent from A4-positive blood vessels and exceptionally rare in non-AD SPs. Indeed, samples from a subset of the non-AD cases contained a considerable number of A4-positive SPs totally devoid of any of the other beta-APP, tau, and NF epitopes. These observations suggest that the deposition of the A4 protein in AD SPs results from the local processing of beta-APPs in association with tau and NF protein fragments. It is unclear whether this association is fortuitous or linked by common mechanisms. However, differences between the complement of beta-APP, tau, and NF protein epitopes in AD versus non-AD brains implicate a defect involving one or more steps in the posttranslational modification, degradation, or elimination of these proteins in AD brains, and this may account for the massive numbers of SPs that characterize AD.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Bioessays. 1989 Feb-Mar;10(2-3):69-74 - PubMed
    1. Lancet. 1988 Sep 24;2(8613):746 - PubMed
    1. Neuropathol Appl Neurobiol. 1989 Mar-Apr;15(2):135-47 - PubMed
    1. Neurobiol Aging. 1989 Mar-Apr;10(2):125-32 - PubMed
    1. Nature. 1987 Feb 19-25;325(6106):733-6 - PubMed

Publication types

MeSH terms