Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004;1(1):44-9.
doi: 10.1159/000076669.

The TAT protein transduction domain enhances the neuroprotective effect of glial-cell-line-derived neurotrophic factor after optic nerve transection

Affiliations
Comparative Study

The TAT protein transduction domain enhances the neuroprotective effect of glial-cell-line-derived neurotrophic factor after optic nerve transection

Ulkan Kilic et al. Neurodegener Dis. 2004.

Abstract

Glial-cell-line-derived neurotrophic factor (GDNF) acts as a potent survival factor for many neuronal populations, including retinal ganglion cells (RGC), indicating a potential therapeutic role of GDNF for neurological disorders. To enhance the tissue distribution and applicability of the neurotrophin, we linked it to a protein transduction domain derived from the HIV TAT protein and tested it in a well-established model for traumatic injury in the CNS: After optic nerve axotomy, the number of surviving RGCs was significantly increased in mice injected with TAT-GDNF on days 0, 3, 7, and 10 after surgery compared with GDNF- or PBS-injected animals. Moreover, TAT-GDNF reduced the number of activated caspase-3-positive cells. These results show that the neuroprotective effect of substances like neurotrophins may be enhanced by linking them to a domain that has been shown to mediate efficient transduction across biological membranes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms