Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Jul-Aug;8(7-8):1249-52.
doi: 10.1089/ars.2006.8.1249.

Redox signaling in cancer biology

Review

Redox signaling in cancer biology

David Gius et al. Antioxid Redox Signal. 2006 Jul-Aug.

Abstract

Over the last three decades, it is has become increasing clear that intracellular signaling pathways are activated via changes in intracellular metabolic oxidation/reduction (redox) reactions involving reactive oxygen species (ROS; i.e., superoxide and hydrogen peroxide). The initial proposals hypothesized that signaling through metabolic oxidation/reduction (redox) reactions involving ROS could contribute to carcinogenesis and progression to malignancy. Strong evidence for this hypothesis was obtained from studies showing that environmental insults (i.e., ionizing radiation) as well as xenobiotics (i.e., polycyclic aromatic hydrocarbons and phorbol esters) capable of inducing steady-state increases in free radical production and ROS could act as both initiators and promoters of carcinogenesis. This Forum is directed at understanding possible redox signaling mechanisms governing cellular radiation response, tumor growth, and response to therapy, as well as the role of nitric oxide in cancer biology.

PubMed Disclaimer

Publication types

LinkOut - more resources