West Nile virus 5'-cap structure is formed by sequential guanine N-7 and ribose 2'-O methylations by nonstructural protein 5
- PMID: 16912287
- PMCID: PMC1563844
- DOI: 10.1128/JVI.00814-06
West Nile virus 5'-cap structure is formed by sequential guanine N-7 and ribose 2'-O methylations by nonstructural protein 5
Abstract
Many flaviviruses are globally important human pathogens. Their plus-strand RNA genome contains a 5'-cap structure that is methylated at the guanine N-7 and the ribose 2'-OH positions of the first transcribed nucleotide, adenine (m(7)GpppAm). Using West Nile virus (WNV), we demonstrate, for the first time, that the nonstructural protein 5 (NS5) mediates both guanine N-7 and ribose 2'-O methylations and therefore is essential for flavivirus 5'-cap formation. We show that a recombinant full-length and a truncated NS5 protein containing the methyltransferase (MTase) domain methylates GpppA-capped and m(7)GpppA-capped RNAs to m(7)GpppAm-RNA, using S-adenosylmethionine as a methyl donor. Furthermore, methylation of GpppA-capped RNA sequentially yielded m(7)GpppA- and m(7)GpppAm-RNA products, indicating that guanine N-7 precedes ribose 2'-O methylation. Mutagenesis of a K(61)-D(146)-K(182)-E(218) tetrad conserved in other cellular and viral MTases suggests that NS5 requires distinct amino acids for its N-7 and 2'-O MTase activities. The entire K(61)-D(146)-K(182)-E(218) motif is essential for 2'-O MTase activity, whereas N-7 MTase activity requires only D(146). The other three amino acids facilitate, but are not essential for, guanine N-7 methylation. Amino acid substitutions within the K(61)-D(146)-K(182)-E(218) motif in a WNV luciferase-reporting replicon significantly reduced or abolished viral replication in cells. Additionally, the mutant MTase-mediated replication defect could not be trans complemented by a wild-type replicase complex. These findings demonstrate a critical role for the flavivirus MTase in viral reproduction and underscore this domain as a potential target for antiviral therapy.
Figures
References
-
- Barbosa, E., and B. Moss. 1978. mRNA(nucleoside-2′-)-methyltransferase from vaccinia virus. Characteristics and substrate specificity. J. Biol. Chem. 253:7698-7702. - PubMed
-
- Benarroch, D., M. P. Egloff, L. Mulard, C. Guerreiro, J. L. Romette, and B. Canard. 2004. A structural basis for the inhibition of the NS5 dengue virus mRNA 2′-O-methyltransferase domain by ribavirin 5′-triphosphate. J. Biol. Chem. 279:35638-35643. - PubMed
-
- Chambers, T. J., C. S. Hahn, R. Galler, and C. M. Rice. 1990. Flavivirus genome organization, expression, and replication. Annu. Rev. Microbiol. 44:649-688. - PubMed
-
- Cleaves, G. R., and D. T. Dubin. 1979. Methylation status of intracellular Dengue type 2 40S RNA. Virology 96:159-165. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous
