Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006;9(3 Suppl):309-17.
doi: 10.3233/jad-2006-9s335.

GSK-3 is essential in the pathogenesis of Alzheimer's disease

Affiliations
Review

GSK-3 is essential in the pathogenesis of Alzheimer's disease

Akihiko Takashima. J Alzheimers Dis. 2006.

Abstract

Glycogen synthase kinase-3 (GSK-3) is a pivotal molecule in the development of Alzheimer's disease (AD). GSK-3beta is involved in the formation of paired helical filament (PHF)-tau, which is an integral component of the neurofibrillary tangle (NFT) deposits that disrupt neuronal function, and a marker of neurodegeneration in AD. GSK-3beta has exactly the same oligonucleotide sequence as tau-protein kinase I (TPKI), which was first purified from the microtubule fraction of bovine brain. Initially, we discovered that GSK-3beta was involved in amyloid-beta (Abeta)-induced neuronal death in rat hippocampal cultures. In the present review, we discuss our initial in vitro results and additional investigations showing that Abeta activates GSK-3beta through impairment of phosphatidylinositol-3 (PI3)/Akt signaling; that Abeta-activated GSK-3beta induces hyperphosphorylation of tau, NFT formation, neuronal death, and synaptic loss (all found in the AD brain); that GSK-3beta can induce memory deficits in vivo; and that inhibition of GSK-3alpha (an isoform of GSK-3beta) reduces Abeta production. These combined results strongly suggest that GSK-3 activation is a critical step in brain aging and the cascade of detrimental events in AD, preceding both the NFT and neuronal death pathways. Therefore, therapeutics targeted to inhibiting GSK-3 may be beneficial in the treatment of this devastating disease.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources