Model-based blood glucose control for Type 1 diabetes via parametric programming
- PMID: 16916082
- DOI: 10.1109/TBME.2006.878075
Model-based blood glucose control for Type 1 diabetes via parametric programming
Abstract
An advanced model-based control technique for regulating the blood glucose for patients with Type 1 diabetes is presented. The optimal insulin delivery rate is obtained off-line as an explicit function of the current blood glucose concentration of the patient by using novel parametric programming algorithms, developed at Imperial College London. The implementation of the optimal insulin delivery rate, therefore, requires simple function evaluation and minimal on-line computations. The proposed framework also addresses the uncertainty in the model due to interpatient and intrapatient variability by identifying the model parameters which ensure that a feasible control law can be obtained. The developments reported in this paper are expected to simplify the insulin delivery mechanism, thereby enhancing the quality of life of the patient.
Similar articles
-
Neural network modeling and control of type 1 diabetes mellitus.Bioprocess Biosyst Eng. 2005 Apr;27(2):75-9. doi: 10.1007/s00449-004-0363-3. Epub 2004 Dec 1. Bioprocess Biosyst Eng. 2005. PMID: 15578231
-
A semiclosed-loop optimal control system for blood glucose level in diabetics.J Med Eng Technol. 2004 Sep-Oct;28(5):189-96. doi: 10.1080/03091900410001662332. J Med Eng Technol. 2004. PMID: 15370997
-
Fuzzy-based controller for glucose regulation in type-1 diabetic patients by subcutaneous route.IEEE Trans Biomed Eng. 2006 Nov;53(11):2201-10. doi: 10.1109/TBME.2006.879461. IEEE Trans Biomed Eng. 2006. PMID: 17073325
-
Physiologic insulin delivery with insulin feedback: a control systems perspective.Comput Methods Programs Biomed. 2011 May;102(2):130-7. doi: 10.1016/j.cmpb.2010.06.007. Epub 2010 Aug 2. Comput Methods Programs Biomed. 2011. PMID: 20674062 Review.
-
Suggested insulin regimens for patients with type 1 diabetes mellitus who wish to fast during the month of Ramadan.Clin Ther. 2008 Aug;30(8):1408-15. doi: 10.1016/j.clinthera.2008.08.007. Clin Ther. 2008. PMID: 18803984 Review.
Cited by
-
Automated control of an adaptive bihormonal, dual-sensor artificial pancreas and evaluation during inpatient studies.IEEE Trans Biomed Eng. 2014 Oct;61(10):2569-81. doi: 10.1109/TBME.2014.2323248. Epub 2014 May 13. IEEE Trans Biomed Eng. 2014. PMID: 24835122 Free PMC article.
-
Closed-loop artificial pancreas using subcutaneous glucose sensing and insulin delivery and a model predictive control algorithm: preliminary studies in Padova and Montpellier.J Diabetes Sci Technol. 2009 Sep 1;3(5):1014-21. doi: 10.1177/193229680900300504. J Diabetes Sci Technol. 2009. PMID: 20144414 Free PMC article.
-
Modeling the Physiological Factors Affecting Glucose Sensor Function in Vivo.J Diabetes Sci Technol. 2015 Jun 30;9(5):993-8. doi: 10.1177/1932296815593094. J Diabetes Sci Technol. 2015. PMID: 26134832 Free PMC article.
-
Treating type 1 diabetes: from strategies for insulin delivery to dual hormonal control.Minerva Endocrinol. 2013 Jun;38(2):145-63. Minerva Endocrinol. 2013. PMID: 23732369 Free PMC article. Review.
-
Artificial pancreas: model predictive control design from clinical experience.J Diabetes Sci Technol. 2013 Nov 1;7(6):1470-83. doi: 10.1177/193229681300700607. J Diabetes Sci Technol. 2013. PMID: 24351173 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical