Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Aug 21;98(4A):27i-33i.
doi: 10.1016/j.amjcard.2005.12.024. Epub 2006 May 26.

Mechanisms for the hypotriglyceridemic effect of marine omega-3 fatty acids

Affiliations
Review

Mechanisms for the hypotriglyceridemic effect of marine omega-3 fatty acids

Michael H Davidson. Am J Cardiol. .

Abstract

A mechanism to explain the hypotriglyceridemic effects of marine omega-3 fatty acids in humans has not been clarified. A working model can be developed at the gene transcriptional level, which involves >or=4 metabolic nuclear receptors. These include liver X receptor, hepatocyte nuclear factor-4alpha (HNF-4alpha), farnesol X receptor, and peroxisome proliferator-activated receptors (PPARs). Each of these receptors is regulated by sterol receptor element binding protein-1c (SREBP-1c), the main genetic switch controlling lipogenesis. Omega-3 fatty acids elicit hypotriglyceridemic effects by coordinately suppressing hepatic lipogenesis through reducing levels of SREBP-1c, upregulating fatty oxidation in the liver and skeletal muscle through PPAR activation, and enhancing flux of glucose to glycogen through downregulation of HNF-4alpha. The net result is the repartitioning of metabolic fuel from triglyceride storage toward oxidation, thereby reducing the substrate available for very-low-density lipoprotein (VLDL) synthesis. By simultaneously downregulating genes encoding proteins that stimulate lipid synthesis and upregulating genes encoding proteins that stimulate fatty acid oxidation, omega-3 fatty acids are more potent hypotriglyceridemic agents than are omega-6 fatty acids, on a carbon-for-carbon basis. Additionally, peroxidation of omega-3 fatty acids may reduce VLDL secretion through stimulating apolipoprotein B degradation. Omega-3 fatty acids may act by enhancing postprandial chylomicron clearance through reduced VLDL secretion and by directly stimulating lipoprotein lipase activity. These combined effects support the use of omega-3 fatty acids as a valuable clinical tool for the treatment of hypertriglyceridemia.

PubMed Disclaimer

Comment in

MeSH terms

Substances

LinkOut - more resources