Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Dec;75(6):375-84.
doi: 10.1016/j.plefa.2006.07.001. Epub 2006 Aug 22.

Proposed mechanisms for red palm oil induced cardioprotection in a model of hyperlipidaemia in the rat

Affiliations

Proposed mechanisms for red palm oil induced cardioprotection in a model of hyperlipidaemia in the rat

Johan S Esterhuyse et al. Prostaglandins Leukot Essent Fatty Acids. 2006 Dec.

Abstract

High-cholesterol diets alter myocardial and vascular NO-cGMP signaling and have been implicated in ischaemic/reperfusion injury. We investigated the effects of dietary red palm oil (RPO) containing fatty acids, carotonoids, tocopherols and tocotrienols on myocardial ischaemic tolerance and NO-cGMP pathway function in the rat. Wistar rats were fed a standard rat chow+/-RPO, or a standard rat chow+cholesterol+/-RPO diet. Myocardial mechanical function and NO-cGMP signaling pathway intermediates were determined before, during and after 25 min ischaemia. RPO-supplementation improved aortic output recovery and increased myocardial ischaemic cGMP concentrations. Simulated ischaemia (hypoxia) increased cardiomyocyte nitric oxide levels in the two RPO supplemented groups, but not in control non-supplemented groups. RPO supplementation also increased hypoxic nitric oxide levels in the control diet fed, but not the cholesterol fed rats. These data suggest that dietary RPO may improve myocardial ischaemic tolerance by increasing bioavailability of NO and improving NO-cGMP signaling in the heart.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources