Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Oct 20;281(42):31920-9.
doi: 10.1074/jbc.M602637200. Epub 2006 Aug 18.

Csk-binding protein mediates sequential enzymatic down-regulation and degradation of Lyn in erythropoietin-stimulated cells

Affiliations
Free article

Csk-binding protein mediates sequential enzymatic down-regulation and degradation of Lyn in erythropoietin-stimulated cells

Evan Ingley et al. J Biol Chem. .
Free article

Abstract

We have shown previously that the Src family kinase Lyn is involved in differentiation signals emanating from activated erythropoietin (Epo) receptors. The importance of Lyn to red cell maturation has been highlighted by Lyn-/- mice developing anemia. Here we show that Lyn interacts with C-terminal Src kinase-binding protein (Cbp), an adaptor protein that recruits negative regulators C-terminal Src kinase (Csk)/Csk-like protein-tyrosine kinase (Ctk). Lyn phosphorylated Cbp on several tyrosine residues, including Tyr314, which recruited Csk/Ctk to suppress Lyn kinase activity. Intriguingly, phosphorylated Tyr314 also bound suppressor of cytokine signaling 1 (SOCS1), another well characterized negative regulator of cell signaling, resulting in elevated ubiquitination, and degradation of Lyn. In Epo-responsive primary cells and cell lines, Lyn rapidly phosphorylated Cbp, suppressing Lyn kinase activity via Csk/Ctk within minutes of Epo stimulation; hours later, SOCS1 bound to Cbp and was involved in the ubiquitination and turnover of Lyn protein. Thus, a single phosphotyrosine residue on Cbp coordinates a two-phase process involving distinct negative regulatory pathways to inactivate, then degrade, Lyn.

PubMed Disclaimer

Publication types