Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar;46(3):403-8.
doi: 10.1093/rheumatology/kel267. Epub 2006 Aug 18.

Bone marrow mesenchymal stromal cells (BM-MSCs) from healthy donors and auto-immune disease patients reduce the proliferation of autologous- and allogeneic-stimulated lymphocytes in vitro

Affiliations

Bone marrow mesenchymal stromal cells (BM-MSCs) from healthy donors and auto-immune disease patients reduce the proliferation of autologous- and allogeneic-stimulated lymphocytes in vitro

C Bocelli-Tyndall et al. Rheumatology (Oxford). 2007 Mar.

Abstract

Objectives: To investigate the ability of bone marrow (BM)-derived mesenchymal stromal cells (BM-MSCs) in suppressing the proliferation of stimulated lymphocytes across a range of conditions including autologous BM-MSCs derived from autoimmune disease (AD) patients.

Methods: In vitro cultures of BM-MSCs from healthy donors and AD patients were established and characterized by their differentiation potential into adipocytes and osteoblasts, and their fibroblast-colony-forming unit (CFU-F) ability and phenotype by flow cytometry. BM-MSCs (irradiated and non-irradiated) from healthy and AD patients were tested for their ability to suppress the in vitro proliferation of autologous and allogeneic peripheral blood mononuclear cells (PBMC) (from healthy donors and patients suffering from various ADs) stimulated with anti-CD3epsilon antibody alone or in combination with anti-CD28 antibody. The anti-proliferative effect of the BM-MSCs from healthy donors was tested also on transformed B-cell lines as a model of non-antigen-stimulated lymphocytes.

Results: BM-MSCs from healthy donors and AD patients reduced the proliferation of autologous and allogeneic PBMCs by up to 90% in a cell dose-dependent fashion. The immunosuppression was independent of the proliferation of the BM-MSCs and was also effective on already proliferating cells. It was independent also of the clinical activity of AD. An MSC dose-dependent pattern of suppression of proliferation was observed also with transformed B-cell lines, similar to that observed with proliferating PBMC.

Conclusions: The BM-MSCs exhibit extensive anti-proliferative properties against lymphocytes under different conditions. This property might offer a form of immunomodulatory cellular therapy for AD patients if further confirmed in animal models.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms