Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Jul 29;150(30):1669-72.

[From gene to disease; primary hyperoxaluria type I caused by mutations in the AGXT gene]

[Article in Dutch]
Affiliations
  • PMID: 16922352
Review

[From gene to disease; primary hyperoxaluria type I caused by mutations in the AGXT gene]

[Article in Dutch]
C S van Woerden et al. Ned Tijdschr Geneeskd. .

Erratum in

  • Ned Tijdschr Geneeskd. 2006 Nov 4;150(44):2460

Abstract

Primary hyperoxaluria type I (PH1) is a congenital defect in glyoxylate metabolism caused by a deficiency in the liver-specific peroxisomal enzyme known as alanine glyoxylate aminotransferase (AGT). The deficiency is due to mutations in the AGXT gene, located on chromosome 2q37.3, and results in the conversion of glyoxylate to oxalate. The crystallisation of oxalate with calcium results in symptoms varying from a solitary kidney stone to end-stage renal disease with systemic oxalosis. The diagnosis is based on increased oxalate and glycolate excretion in the urine, reduced AGT activity in liver tissue, and confirmed mutations in the AGXT gene. Over 50 disease-causing mutations have been identified in PH1, which are associated with a wide range of effects on the AGT enzyme. Homozygous Gly170Arg or Phei52Ile mutations are associated with a reduction in urinary oxalate excretion upon pyridoxine administration and long-term preservation of renal function when treatment is initiated in a timely manner. Homozygous 33insC and Gly82Arg mutations result in a much poorer prognosis. Mutational analysis of the AGXT gene in PH1 patients can be a useful tool for establishing the diagnosis and choosing an appropriate therapeutic strategy.

PubMed Disclaimer

Similar articles

Substances

LinkOut - more resources