Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Sep;98(5):1497-506.
doi: 10.1111/j.1471-4159.2006.04022.x.

RNA interference targeting protein tyrosine phosphatase zeta/receptor-type protein tyrosine phosphatase beta suppresses glioblastoma growth in vitro and in vivo

Affiliations
Free article
Comparative Study

RNA interference targeting protein tyrosine phosphatase zeta/receptor-type protein tyrosine phosphatase beta suppresses glioblastoma growth in vitro and in vivo

Ulrike Ulbricht et al. J Neurochem. 2006 Sep.
Free article

Abstract

The protein tyrosine phosphatase zeta/receptor-type protein tyrosine phosphatase beta (PTPzeta/RPTPbeta) and its ligand pleiotrophin (PTN) are overexpressed in human glioblastomas. Both molecules are involved in neuronal cell migration during CNS development. In addition, PTN can induce glioma cell migration which is at least in part mediated through binding to PTPzeta/RPTPbeta. To study the relevance of this ligand-receptor pair for glioma growth in vitro and in vivo, we transfected the human glioblastoma cell line U251-MG with small interfering RNA (siRNA) directed against PTPzeta/RPTPbeta. Stable siRNA transfection resulted in strong down-regulation of PTPzeta/RPTPbeta expression. When injected subcutaneously into nude mice, clones that expressed normal levels of PTPzeta/RPTPbeta (PTPzeta + clones) formed exponentially growing tumours, whereas tumour growth was almost completely abrogated for clones that expressed reduced PTPzeta/RPTPbeta levels (PTPzeta - clones). Similar results were obtained using an orthotopic intracerebral model. Proliferation of PTPzeta - cells in vitro was significantly reduced compared with that of control clones. Matrix-immobilized PTN stimulated the proliferation of PTPzeta + cells but not of PTPzeta - cells. Haptotactic migration induced by PTN was reduced for PTPzeta - clones compared with control clones. Our findings suggest that antagonization of PTPzeta/RPTPbeta expression can inhibit glioma growth in vivo and may thus represent a potentially promising treatment strategy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources