Characterization of functionally important domains in human vitamin K-dependent protein S using monoclonal antibodies
- PMID: 1692322
Characterization of functionally important domains in human vitamin K-dependent protein S using monoclonal antibodies
Abstract
Vitamin K-dependent protein S is an anticoagulant plasma protein functioning as a cofactor to activated protein C in the degradation of coagulation factors Va and VIIIa. To determine which regions in protein S are important for its cofactor activity, we have raised and characterized a large panel of monoclonal antibodies against human protein S. Several of the antibodies were directed against Ca2(+)-dependent epitopes, and they were found to be located either in the domain containing gamma-carboxyglutamic acid (Gla), the thrombin-sensitive region, or in the first epidermal growth factor (EGF)-like domain. The first two types of epitopes were exposed at approximately 1 mM Ca2+, whereas the epitope(s) in the EGF-like domains required less than 1 microM Ca2+, suggesting the presence of one or more high affinity Ca2(+)-binding site(s). The antibodies, as well as their Fab' fragments, against all three types of Ca2(+)-dependent epitopes efficiently inhibited the activated protein C cofactor function of protein S, but through different mechanisms. The antibodies against the Gla domain exerted their effects through inhibition of protein S binding to negatively charged phospholipid. Fab'-fragments of antibodies against the thrombin-sensitive region and the first EGF-like domain were the most potent inhibitors of the activated protein C cofactor function but did not inhibit phospholipid binding of protein S. In conclusion, we have identified the domains in protein S that are important for the activated protein C cofactor activity. The Gla domain is instrumental in the binding of protein S to phospholipid, whereas the thrombin-sensitive region and the first EGF-like domain may be directly involved in protein-protein interactions on the phospholipid surface.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
