PBP5 complementation of a PBP3 deficiency in Enterococcus hirae
- PMID: 16923897
- PMCID: PMC1595359
- DOI: 10.1128/JB.00334-06
PBP5 complementation of a PBP3 deficiency in Enterococcus hirae
Abstract
The low susceptibility of enterococci to beta-lactams is due to the activity of the low-affinity penicillin-binding protein 5 (PBP5). One important feature of PBP5 is its ability to substitute for most, if not all, penicillin-binding proteins when they are inhibited. That substitution activity was analyzed in Enterococcus hirae SL2, a mutant whose pbp5 gene was interrupted by the nisRK genes and whose PBP3 synthesis was submitted to nisin induction. Noninduced SL2 cells were unable to divide except when plasmid-borne pbp5 genes were present, provided that the PBP5 active site was functional. Potential protein-protein interaction sites of the PBP5 N-terminal module were mutagenized by site-directed mutagenesis. The T167-L184 region (designated site D) appeared to be an essential intramolecular site needed for the stability of the protein. Mutations made in the two globular domains present in the N-terminal module indicated that they were needed for the suppletive activity. The P197-N209 segment (site E) in one of these domains seemed to be particularly important, as single and double mutations reduced or almost completely abolished, respectively, the action of PBP5.
Figures
References
-
- Alaedini, A., and R. A. Day. 1999. Identification of two penicillin-binding multienzyme complexes in Haemophilus influenzae. Biochem. Biophys. Res. Commun. 264:191-195. - PubMed
-
- Ausubel, F. M., R. Brant, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 2001. Current protocols in molecular biology. John Wiley & Sons, New York, N.Y.
-
- Bayles, K. W., E. W. Brunskill, J. J. Iandolo, L. L. Hruska, S. Huang, P. A. Pattee, B. K. Smiley, and R. E. Yasbin. 1994. A genetic and molecular characterization of the recA gene from Staphylococcus aureus. Gene 147:13-20. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
