Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Aug 22;2006(349):re8.
doi: 10.1126/stke.3492006re8.

Localizing NADPH oxidase-derived ROS

Affiliations
Review

Localizing NADPH oxidase-derived ROS

Masuko Ushio-Fukai. Sci STKE. .

Abstract

Reactive oxygen species (ROS) function as signaling molecules to mediate various biological responses, including cell migration, growth, and gene expression. ROS are diffusible and short-lived molecules. Thus, localizing the ROS signal at the specific subcellular compartment is essential for activating redox signaling events after receptor activation. NADPH (nicotinamide adenine dinucleotide phosphate) oxidase is one of the major sources of ROS in vasculature; it consists of a catalytic subunit (Nox1, Nox2, Nox3, Nox4, or Nox5), p22phox, p47phox, p67phox, and the small guanosine triphosphatase Rac1. Targeting of NADPH oxidase to focal complexes in lamellipodia and membrane ruffles through the interaction of p47phox with the scaffold proteins TRAF4 and WAVE1 provides a mechanism for achieving localized ROS production, which is required for directed cell migration. ROS are believed to inactivate protein tyrosine phosphatases, which concentrate in specific subcellular compartments, thereby establishing a positive feedback system that activates redox signaling pathways to promote cell movement. Additionally, ROS production may be localized through interactions of NADPH oxidase with signaling platforms associated with lipid rafts and caveolae, as well as with endosomes. There is also evidence that NADPH oxidase is found in the nucleus, indicating its involvement in redox-responsive gene expression. This review focuses on targeting of NADPH oxidase to discrete subcellular compartments as a mechanism of localizing ROS and activation of downstream redox signaling events that mediate various cell functions.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources