Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Sep;273(18):4141-53.
doi: 10.1111/j.1742-4658.2006.05432.x. Epub 2006 Aug 23.

Cell-free expression as an emerging technique for the large scale production of integral membrane protein

Affiliations
Free article
Review

Cell-free expression as an emerging technique for the large scale production of integral membrane protein

Christian Klammt et al. FEBS J. 2006 Sep.
Free article

Abstract

Membrane proteins are highly underrepresented in structural data banks due to tremendous difficulties that occur upon approaching their structural analysis. Inefficient sample preparation from conventional cellular expression systems is in many cases the first major bottleneck. Preparative scale cell-free expression has now become an emerging alternative tool for the high level production of integral membrane proteins. Many toxic effects attributed to the overproduction of recombinant proteins are eliminated by cell-free expression as viable host cells are no longer required. A unique characteristic is the open nature of cell-free systems that offers a variety of options to manipulate the reaction conditions in order to protect or to stabilize the synthesized recombinant proteins. Detergents or lipids can easily be supplemented and membrane proteins can therefore be synthesized directly into a defined hydrophobic environment of choice that permits solubility and allows the functional folding of the proteins. Alternatively, cell-free produced precipitates of membrane proteins can efficiently be solubilized in mild detergents after expression. Highly valuable for structural approaches is the fast and efficient cell-free production of uniformly or specifically labeled proteins. A considerable number of membrane proteins from diverse families like prokaryotic small multidrug transporters or eukaryotic G-protein coupled receptors have been produced in cell-free systems in high amounts and in functionally active forms. We will give an overview about the current state of the art of this new approach with special emphasis on technical aspects as well as on the functional and structural characterization of cell-free produced membrane proteins.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources