Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006;50(5):476-81.
doi: 10.1159/000095354. Epub 2006 Aug 24.

Actions of short-term fasting on human skeletal muscle myogenic and atrogenic gene expression

Affiliations

Actions of short-term fasting on human skeletal muscle myogenic and atrogenic gene expression

A E Larsen et al. Ann Nutr Metab. 2006.

Abstract

Background: Skeletal muscle mass is governed by multiple IGF-1-sensitive positive regulators of muscle-specific protein synthesis (myogenic regulatory factors which includes myoD, myogenin and Myf5) and negative regulators, including the atrogenic proteins myostatin, atrogin-1 and muscle ring finger 1 (MuRF-1). The coordinated control of these myogenic and atrogenic factors in human skeletal muscle following short-term fasting is currently unknown.

Method: Healthy adults (n = 6, age 27.6 years) undertook a 40-hour fast. Skeletal muscle biopsy (vastus lateralis) and venous blood samples were taken 3, 15 and 40 h into the fast after an initial standard high-carbohydrate meal. Gene expression of the myogenic regulator factors (myoD, myogenin and Myf5) and the atrogenic factors (myostatin, atrogin-1 and MuRF-1) were determined by real-time PCR analysis. Plasma myostatin and IGF-1 were determined by ELISA.

Results: There were no significant alterations in either the positive or negative regulators of muscle mass at either 15 or 40 h, when compared to gene expression measured 3 h after a meal. Similarly, plasma myostatin and IGF-1 were also unaltered at these times.

Conclusions: Unlike previous observations in catabolic and cachexic diseased states, short-term fasting (40 h) fails to elicit marked alteration of the genes regulating both muscle-specific protein synthesis or atrophy. Greater periods of fasting may be required to initiate coordinated inhibition of myogenic and atrogenic gene expression.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources