Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Sep;105(3):478-84.
doi: 10.1097/00000542-200609000-00010.

Human skin microcirculation after brachial plexus block evaluated by wavelet transform of the laser Doppler flowmetry signal

Affiliations

Human skin microcirculation after brachial plexus block evaluated by wavelet transform of the laser Doppler flowmetry signal

Svein A Landsverk et al. Anesthesiology. 2006 Sep.

Abstract

Background: The skin microcirculation may be evaluated noninvasively by laser Doppler flowmetry and iontophoresis with acetylcholine and sodium nitroprusside. Wavelet transform of the perfusion signal shows periodic oscillations of five characteristic frequencies in the interval 0.0095-1.6 Hz. The aim of the current study was to investigate alterations in skin microcirculation induced by brachial plexus block, with emphasis on the periodic oscillations.

Methods: Healthy nonsmokers undergoing hand surgery (n = 13) were anesthetized with brachial plexus block, using bupivacaine, lidocaine, and epinephrine. Skin microcirculation was evaluated by laser Doppler flowmetry and iontophoresis with acetylcholine and sodium nitroprusside before and after brachial plexus block. Wavelet transform of the perfusion signal was performed. As a control group, 10 healthy nonsmokers were included.

Results: In the anesthetized arm, skin perfusion after brachial plexus block increased from 19 (12-30) to 24 (14-39) arbitrary units (P < 0.01). A significant increase was also seen in the contralateral arm from 17 (14-32) to 20 (14-42) arbitrary units (P < 0.01). After brachial plexus block, spectral analysis revealed a significant reduction in relative amplitude of the oscillatory components within the 0.0095- to 0.021- (P < 0.001) and 0.021- to 0.052-Hz (P < 0.001) intervals in the anesthetized arm.

Conclusion: Alterations in skin microcirculation induced by brachial plexus block can be evaluated by wavelet transform of the laser Doppler flowmetry signal. Brachial plexus block reduces the oscillatory components within the 0.0095- to 0.021- and 0.021- to 0.052-Hz intervals of the perfusion signal. These alterations are related to inhibition of sympathetic activity and a possible impairment of endothelial function.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources