Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Aug;2(8):448-54.
doi: 10.1038/ncpneuro0262.

Mechanisms of Disease: what factors limit the success of peripheral nerve regeneration in humans?

Affiliations
Review

Mechanisms of Disease: what factors limit the success of peripheral nerve regeneration in humans?

Ahmet Höke. Nat Clin Pract Neurol. 2006 Aug.

Abstract

Functional recovery after repair of peripheral nerve injury in humans is often suboptimal. Over the past quarter of a century, there have been significant advances in human nerve repair, but most of the developments have been in the optimization of surgical techniques. Despite extensive research, there are no current therapies directed at the molecular mechanisms of nerve regeneration. Multiple interventions have been shown to improve nerve regeneration in small animal models, but have not yet translated into clinical therapies for human nerve injuries. In many rodent models, regeneration occurs over relatively short distances, so the duration of denervation is short. By contrast, in humans, nerves often have to regrow over long distances, and the distal portion of the nerve progressively loses its ability to support regeneration during this process. This can be largely attributed to atrophy of Schwann cells and loss of a Schwann cell basal lamina tube, which results in an extracellular environment that is inhibitory to nerve regeneration. To develop successful molecular therapies for nerve regeneration, we need to generate animal models that can be used to address the following issues: improving the intrinsic ability of neurons to regenerate to increase the speed of axonal outgrowth; preventing loss of basal lamina and chronic denervation changes in the denervated Schwann cells; and overcoming inhibitory cues in the extracellular matrix.

PubMed Disclaimer

MeSH terms

LinkOut - more resources