Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Jul;2(7):373-82.
doi: 10.1038/ncprheum0216.

Technology Insight: adult stem cells in cartilage regeneration and tissue engineering

Affiliations
Review

Technology Insight: adult stem cells in cartilage regeneration and tissue engineering

Faye H Chen et al. Nat Clin Pract Rheumatol. 2006 Jul.

Abstract

Articular cartilage, the load-bearing tissue of the joint, has limited repair and regeneration potential. The scarcity of treatment modalities for large chondral defects has motivated attempts to engineer cartilage tissue constructs that can meet the functional demands of this tissue in vivo. Cartilage tissue engineering requires three components: cells, scaffold, and environment. Adult stem cells, specifically multipotent mesenchymal stem cells, are considered the cell type of choice for tissue engineering, because of the ease with which they can be isolated and expanded and their multilineage differentiation capabilities. Successful outcome of cell-based cartilage tissue engineering ultimately depends on the proper differentiation of stem cells into chondrocytes and the assembly of the appropriate cartilaginous matrix to achieve the load-bearing capabilities of the natural articular cartilage. Multiple requirements, including growth factors, signaling molecules, and physical influences, need to be met. Adult mesenchymal stem-cell-based tissue engineering is a promising technology for the development of a transplantable cartilage replacement to improve joint function.

PubMed Disclaimer

Publication types

LinkOut - more resources