Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Jun 15;75(12):2271-5.

Human P40 T-cell growth factor (interleukin-9) supports erythroid colony formation

Affiliations
  • PMID: 1693525
Free article

Human P40 T-cell growth factor (interleukin-9) supports erythroid colony formation

R E Donahue et al. Blood. .
Free article

Abstract

Because human P40 T-cell growth factor, tentatively designated interleukin-9 (IL-9), was isolated through its ability to stimulate a human IL-3-dependent leukemic cell line (M-O7E), we tested the ability of IL-9 to support the growth and differentiation of normal hematopoietic progenitor cells from peripheral blood and bone marrow. Although the M-O7E cell line was derived from a patient with megakaryoblastic leukemia, IL-9 has not proved to be a growth or maturation factor for megakaryocytes, but instead has proved to be effective in supporting the development of erythroid bursts (BFU-E) in cultures supplemented with erythropoietin. Using highly purified progenitors from peripheral blood, IL-3 showed a BFU-E plating efficiency of 46% compared with 20% for IL-9. Because of the purity of these cell preparations and the low cell density in culture, IL-9 is likely to interact directly with erythroid progenitors. Analysis of mixing experiments and of the morphology of the BFU-E in culture indicated that IL-9 interacts preferentially with a relatively early population of IL-3-responsive BFU-E. In cultures of human bone marrow or cord blood, IL-9 selectively supported erythroid colony formation, while IL-3 and granulocyte/macrophage colony-stimulating factor additionally yielded granulocyte/macrophage colonies. Therefore, IL-9 represents a new T cell-derived cytokine with the potential for selectively stimulating erythroid development in the hematopoietic system.

PubMed Disclaimer

MeSH terms

LinkOut - more resources