Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Sep;8(11):2640-6.
doi: 10.1016/j.micinf.2006.07.009. Epub 2006 Aug 8.

Surface layer proteins from Clostridium difficile induce inflammatory and regulatory cytokines in human monocytes and dendritic cells

Affiliations
Free article

Surface layer proteins from Clostridium difficile induce inflammatory and regulatory cytokines in human monocytes and dendritic cells

Clara Maria Ausiello et al. Microbes Infect. 2006 Sep.
Free article

Abstract

Clostridium difficile, an etiological agent of most cases of antibiotic-associated diarrhea, exerts its pathological action mainly by the activity of toxin A and toxin B. Less known is the role that S-layer proteins (SLPs), predominant surface components of the bacterium, may play in pathogenesis. Here, we evaluate the ability of SLPs to modulate the function of human monocytes and dendritic cells (DC) and to induce inflammatory and regulatory cytokines, influencing the natural and adaptive immune response. To this aim, SLPs were extracted from the clinical isolate C253 and characterized for their effects on immune cells. SLPs induced the release of elevated amounts of interleukin (IL)-1beta and IL-6 pro-inflammatory cytokines by resting monocytes, induced maturation of human monocyte-derived DC (MDDC), and enhanced proliferation of allogeneic T cells. C253-SLP-treated MDDC also secreted large amounts of IL-10 and IL-12p70 and induced a mixed Th1/Th2 orientation of immune response in naïve CD4 T cells. In conclusion, C. difficile SLPs may contribute to the pathogenicity of the bacterium by perturbing the fine balance of inflammatory and regulatory cytokines. These data are of interest also in the light of the possible use of SLPs in a multicomponent vaccine against C. difficile infections for high-risk patients.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources