Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 May;70(2):462-8.
doi: 10.1016/j.bioelechem.2006.07.009. Epub 2006 Jul 14.

Na-nitroprusside and HgCl2 modify the water permeability and volume of human erythrocytes

Affiliations

Na-nitroprusside and HgCl2 modify the water permeability and volume of human erythrocytes

Gojmir Lahajnar et al. Bioelectrochemistry. 2007 May.

Abstract

The passage of water through the aquaporin-1 (AQP1) transmembrane channel protein of the human erythrocyte is known to be inhibited by organic mercurials such as p-chloromercuribenzoate (pCMB), which react with the free SH-group of the critical cysteine (Cys189) located near the constriction of the AQP1 water-specific channel. Sodium nitroprusside (SNP), which is known as a nitric oxide (NO) donor in interactions with SH-containing molecules, is shown here to suppress the diffusional water permeability (P(d)) of the erythrocyte membrane, presumably as a result of reaction with the Cys189 of the human erythrocyte AQP1 water channels. Further, treatment of erythrocytes with HgCl(2) is found to result in a cell volume decrease that can be related to activation of membrane K(+)-selective Gárdos channels and subsequent loss of intracellular K(+) and cell shrinkage. The variations in P(d) and volume of the erythrocyte were deduced from induced variations in the measured proton ((1)H) nuclear magnetic resonance (NMR) transverse (T(2)) relaxation functions of water exchanging between diamagnetic intracellular and paramagnetic extracellular compartments of the 20-25% hematocrit samples. The extracellular solvent contained 10 mM membrane-impermeable paramagnetic Mn(2+) ions. The (1)H-T(2) NMR technique allows determination of the time constant tau(exch) (for exchange of the erythrocyte intracellular water) that is inversely proportional to the permeability coefficient P(d) when the intracellular water volume is left unmodified, as in the case of SNP-treated erythrocytes. However, for HgCl(2)-treated erythrocytes, this technique showed simultaneous variation of both tau(exch) and the volume ratio V(in)/V(out) of intracellular and extracellular water in proportions suggesting that P(d) was left unmodified. The HgCl(2) effect has been found to be partly reversible by the reducing activity of added mercaptoethanol.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources