Use of external controls in microarray experiments
- PMID: 16939785
- DOI: 10.1016/S0076-6879(06)11004-6
Use of external controls in microarray experiments
Abstract
DNA microarray analysis has become the most widely used technique for the study of gene expression patterns on a genomic scale. Microarray analysis is a complex technique involving many steps, and a number of commercial and in-house developed arrays and protocols for data collection and analysis are used in different laboratories. Inclusion of external or spike-in RNA controls allows one to evaluate the variability in gene expression measurements and to facilitate the comparison of data collected using different platforms and protocols. This chapter describes what external controls are, which collections of spike-in controls are available to researchers, and how they are implemented in the laboratory. Applications of external controls in the assessment of microarray performance, normalization strategies, the evaluation of algorithms for gene expression analysis, and the potential to quantify absolute mRNA levels are discussed.
Similar articles
-
Universal external RNA controls for microbial gene expression analysis using microarray and qRT-PCR.J Microbiol Methods. 2007 Mar;68(3):486-96. doi: 10.1016/j.mimet.2006.10.014. Epub 2006 Dec 14. J Microbiol Methods. 2007. PMID: 17173990
-
"Per cell" normalization method for mRNA measurement by quantitative PCR and microarrays.BMC Genomics. 2006 Mar 29;7:64. doi: 10.1186/1471-2164-7-64. BMC Genomics. 2006. PMID: 16571132 Free PMC article.
-
Correlation analysis of external RNA controls reveals its utility for assessment of microarray assay.Anal Biochem. 2009 Feb 15;385(2):203-7. doi: 10.1016/j.ab.2008.11.019. Epub 2008 Dec 6. Anal Biochem. 2009. PMID: 19059192
-
Standards in gene expression microarray experiments.Methods Enzymol. 2006;411:63-78. doi: 10.1016/S0076-6879(06)11005-8. Methods Enzymol. 2006. PMID: 16939786 Review.
-
Genomic DNA as a general cohybridization standard for ratiometric microarrays.Methods Enzymol. 2006;410:237-79. doi: 10.1016/S0076-6879(06)10012-9. Methods Enzymol. 2006. PMID: 16938555 Review.
Cited by
-
Identifying accurate metagenome and amplicon software via a meta-analysis of sequence to taxonomy benchmarking studies.PeerJ. 2019 Jan 4;7:e6160. doi: 10.7717/peerj.6160. eCollection 2019. PeerJ. 2019. PMID: 30631651 Free PMC article.
-
Robustness of Random Forest-based gene selection methods.BMC Bioinformatics. 2014 Jan 13;15:8. doi: 10.1186/1471-2105-15-8. BMC Bioinformatics. 2014. PMID: 24410865 Free PMC article.
-
Exploring the use of internal and externalcontrols for assessing microarray technical performance.BMC Res Notes. 2010 Dec 28;3:349. doi: 10.1186/1756-0500-3-349. BMC Res Notes. 2010. PMID: 21189145 Free PMC article.
-
Empirical methods for controlling false positives and estimating confidence in ChIP-Seq peaks.BMC Bioinformatics. 2008 Dec 5;9:523. doi: 10.1186/1471-2105-9-523. BMC Bioinformatics. 2008. PMID: 19061503 Free PMC article.
-
scBatch: batch-effect correction of RNA-seq data through sample distance matrix adjustment.Bioinformatics. 2020 May 1;36(10):3115-3123. doi: 10.1093/bioinformatics/btaa097. Bioinformatics. 2020. PMID: 32053185 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources