Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Oct;70(8):1423-31.
doi: 10.1038/sj.ki.5001779. Epub 2006 Aug 30.

Glomerular sclerosis in kidneys with congenital nephrotic syndrome (NPHS1)

Affiliations
Free article

Glomerular sclerosis in kidneys with congenital nephrotic syndrome (NPHS1)

A-M Kuusniemi et al. Kidney Int. 2006 Oct.
Free article

Abstract

Congenital nephrotic syndrome of the Finnish type (NPHS1) is a rare genetic disease caused by mutations in the NPHS1 gene encoding a major podocyte slit-diaphragm protein, nephrin. Patients with NPHS1 have severe nephrotic syndrome from birth and develop renal fibrosis in early childhood. In this work, we studied the development of glomerular sclerosis in kidneys removed from 4- to 44-month-old NPHS1 patients. The pathological lesions and expression of glomerular cell markers were studied in nephrectomized NPHS1 and control kidneys using light and electron microscopy and immunohistochemistry. An analysis of 1528 glomeruli from 20 patients revealed progressive mesangial sclerosis and capillary obliteration. Although few inflammatory cells were detected in the mesangial area, paraglomerular inflammation and fibrosis was common. The podocytes showed severe ultrastructural changes and hypertrophy with the upregulation of cyclins A and D1. Podocyte proliferation, however, was rare. Apoptosis was hardly detected and the expression of antiapoptotic B-cell lymphoma-2 and proapoptotic p53 were comparable to controls. Moderate amounts of podocytes were secreted into the urine of NPHS1 patients. Shrinkage of the glomerular tuft was common, whereas occlusion of tubular opening or protrusion of the glomerular tuft into subepithelial space or through the Bowman's capsule were not detected. The results indicate that, in NPHS1 kidneys, the damaged podocytes induce progressive mesangial expansion and capillary obliteration. Podocyte depletion, glomerular tuft adhesion, and misdirected filtration, however, seem to play a minor role in the nephron destruction.

PubMed Disclaimer

Publication types