Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006;16(10):875-90.
doi: 10.1002/hipo.20218.

FoxG1 haploinsufficiency results in impaired neurogenesis in the postnatal hippocampus and contextual memory deficits

Affiliations

FoxG1 haploinsufficiency results in impaired neurogenesis in the postnatal hippocampus and contextual memory deficits

Lijian Shen et al. Hippocampus. 2006.

Abstract

FoxG1 (formerly BF-1) encodes a transcription factor that regulates neurogenesis in the embryonic telencephalon. The current study suggests that FoxG1 also regulates neurogenesis in the postnatal hippocampus. FoxG1 continues to be strongly expressed in areas of known postnatal neurogenesis, including the subventricular zone of the lateral ventricle and the dentate gyrus (DG) of the hippocampus. Remarkably, FoxG1+/- mice have a 60% decrease in the total number of hippocampal dentate granule cells that is related to a loss of DG neurogenesis. Comparison of acute and chronic BrdU labeling, and PSA-NCAM staining suggests that the stage at which this loss of neurogenesis occurs progresses with age. Juvenile mice FoxG1+/- primarily show failed apparent survival of postnatally born DG neurons, whereas adult FoxG1+/- mice also show impairment of proliferation and initial DG neuron differentiation. Consistent with this process predominantly affecting postnatal hippocampal neurogenesis, BrdU pulses at embryonic days 16, 17, and 18 labels a higher percentage of DG cells in 6-week-old FoxG1+/- mice than in littermate controls. In contrast to the marked effect of FoxG1 haploinsufficiency on postnatal hippocampal neurogenesis, postnatal neurogenesis of olfactory bulb interneurons is grossly unaffected. Behaviorally, FoxG1+/- mice show hyperlocomotion and impaired habituation in the open field, and a severe deficit in contextual fear conditioning that are suggestive of impaired hippocampal function. Although mechanistic connections between FoxG1 haploinsufficiency and either failed postnatal DG neurogenesis or the behavioral deficits remain to be elucidated, these results present a new model system for impaired postnatal neurogenesis in the DG of adult mice.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms