Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990;35(1):139-44.
doi: 10.1016/0306-4522(90)90128-q.

In vivo evidence that 5-hydroxytryptamine (5-HT) neuronal firing and release are not necessarily correlated with 5-HT metabolism

Affiliations

In vivo evidence that 5-hydroxytryptamine (5-HT) neuronal firing and release are not necessarily correlated with 5-HT metabolism

F Crespi et al. Neuroscience. 1990.

Abstract

The relationship between 5-hydroxytryptamine release, metabolism and unit activity has been investigated in the anaesthetized rat. 5-Hydroxytryptamine release and metabolism were monitored in vivo by the measurement of extracellular 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in the frontal cortex using in vivo voltammetry combined with nafion-coated and uncoated electrically pretreated carbon fibre electrodes. The monoamine oxidase inhibitor pargyline (100 mg/kg) increased extracellular 5-hydroxytryptamine and decreased 5-hydroxyindoleacetic acid. The 5-hydroxytryptamine releaser fenfluramine (10 mg/kg i.p.) acutely increased extracellular 5-hydroxytryptamine while having no effect on 5-hydroxyindoleacetic acid and the effect on extracellular 5-hydroxytryptamine was markedly reduced in rats pretreated (four weeks) with 5,7-dihydroxytryptamine. 8-Hydroxy-2-(di-n-propyl-amino) tetralin (10 micrograms/kg i.v.), an agonist at the 5-hydroxytryptamine1A somatodendritic autoreceptor, inhibited 5-hydroxytryptamine neuronal firing in the dorsal raphe nucleus and decreased extracellular 5-hydroxytryptamine during the period when firing was inhibited but did not alter extracellular 5-hydroxyindoleacetic acid. In contrast 5-methoxy-3-(1,2,3,6-tetrahydro-4-pyridin-4-yl) (RU 24969), which is an agonist at the terminal autoreceptor in the rat, had no effect on 5-hydroxytryptamine neuronal firing but decreased 5-hydroxytryptamine and 5-hydroxyindoleacetic acid. The results support the view that extracellular 5-hydroxyindoleacetic acid is not a good index of 5-hydroxytryptamine release and that under specific circumstances 5-hydroxytryptamine neuronal firing, release and metabolism are independent of one another.

PubMed Disclaimer

Publication types

LinkOut - more resources