Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Sep;209(Pt 18):3636-51.
doi: 10.1242/jeb.02403.

Modeling the electric field of weakly electric fish

Affiliations

Modeling the electric field of weakly electric fish

David Babineau et al. J Exp Biol. 2006 Sep.

Abstract

Weakly electric fish characterize the environment in which they live by sensing distortions in their self-generated electric field. These distortions result in electric images forming across their skin. In order to better understand electric field generation and image formation in one particular species of electric fish, Apteronotus leptorhynchus, we have developed three different numerical models of a two-dimensional cross-section of the fish's body and its surroundings. One of these models mimics the real contour of the fish; two other geometrically simple models allow for an independent study of the effects of the fish's body geometry and conductivity on electric field and image formation. Using these models, we show that the fish's tapered body shape is mainly responsible for the smooth, uniform field in the rostral region, where most electroreceptors are located. The fish's narrowing body geometry is also responsible for the relatively large electric potential in the caudal region. Numerical tests also confirm the previous hypothesis that the electric fish body acts approximately like an ideal voltage divider; this is true especially for the tail region. Next, we calculate electric images produced by simple objects and find they vary according to the current density profile assigned to the fish's electric organ. This explains some of the qualitative differences previously reported for different modeling approaches. The variation of the electric image's shape as a function of different object locations is explained in terms of the fish's geometrical and electrical parameters. Lastly, we discuss novel cues for determining an object's rostro-caudal location and lateral distance using these electric images.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources